• Acta Optica Sinica
  • Vol. 39, Issue 12, 1223002 (2019)
Wei Xin, Hongwu Yin, and [in Chinese]*
Author Affiliations
  • Institute of Condensed Matter Physics, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei 066004, China
  • show less
    DOI: 10.3788/AOS201939.1223002 Cite this Article Set citation alerts
    Wei Xin, Hongwu Yin, [in Chinese]. Transition Frequency and Spontaneous Emission Rate in the Asymmetric Gaussian Potential Two-Level System[J]. Acta Optica Sinica, 2019, 39(12): 1223002 Copy Citation Text show less
    References

    [1] Xue Y Z, Chen Z S, Ni H Q et al. Resonantly driven exciton Rabi oscillation in single quantum dots emitting at 1300 nm[J]. Chinese Physics B, 26, 084202(2017). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-ZGWL201708029.htm

    [2] Li B X, Zheng J, Chi F. Rectification effect of the heat generation by electric current in a quantum dot molecular[J]. Chinese Physics Letters, 31, 057302(2014). http://www.cqvip.com/QK/84212X/20145/49597162.html

    [3] Yao Q Z, Chen S H. Polaronic correction to the ground state energy and effective mass in a two- and three-dimensional quantum dot[J]. Journal of Low Temperature Physics, 162, 34-39(2011).

    [4] Yang W H, Wang H L, Wang Z X et al. Wavelength conversion efficiency of quantum dot semiconductor optical amplifier[J]. Acta Optica Sinica, 37, 0406005(2017).

    [5] Wan J N, Lin Y, Zhong Y et al. Effect of gold nanoparticles on fluorescence spontaneous emission of quantum dots[J]. Laser & Optoelectronics Progress, 55, 071601(2018).

    [6] Li W P, Xiao J L, Yin J W et al. The energy levels of a two-electron two-dimensional parabolic quantum dot[J]. Chinese Physics B, 19, 047102(2010). http://www.cnki.com.cn/Article/CJFDTotal-ZGWL201004055.htm

    [7] Chen Y J, Xiao J L. Influences of the temperature on the parabolic quantum dot qubit in the magnetic field[J]. Journal of Low Temperature Physics, 186, 241-249(2017). http://link.springer.com/10.1007/s10909-016-1688-4

    [8] Sun Y, Ding Z H, Xiao J L. Effects of temperature and magnetic field on the coherence time of a RbCl parabolic quantum dot qubit[J]. Journal of Electronic Materials, 46, 439-442(2017). http://link.springer.com/article/10.1007/s11664-016-4867-9

    [9] Medeiros-Ribeiro G, Leonard D, Petroff P M. Electron and hole energy levels in InAs self-assembled quantum dots[J]. Applied Physics Letters, 66, 1767-1769(1995). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4885161

    [10] Kash K, Scherer A, Worlock J M et al. Optical spectroscopy of ultrasmall structures etched from quantum wells[J]. Applied Physics Letters, 49, 1043-1045(1986). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4855283

    [11] Reed M, Randall J, Aggarwal R et al. Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure[J]. Physical Review Letters, 60, 535-537(1988). http://www.ncbi.nlm.nih.gov/pubmed/10038575

    [12] Chen C Y, Li W S, Teng X Y et al. Polaron in a quantum disk[J]. Physica B: Condensed Matter, 245, 92-102(1998). http://www.sciencedirect.com/science/article/pii/S0921452697830876

    [13] Yin J W, Xiao J L, Yu Y F et al. The effect of Coulomb potential to the decoherence of the parabolic quantum dot qubit[J]. Acta Physica Sinica, 57, 2695-2698(2008).

    [14] Bai X F, Xin W, Yin H W et al. The properties of the ground state of the Fröhlich bipolaron with Rashba spin-orbit coupling in a quantum dot[J]. International Journal of Theoretical Physics, 56, 1673-1684(2017). http://link.springer.com/10.1007/s10773-017-3313-y

    [15] Zhang Z H, Zou L L, Liu C L et al. Electric field effect on the nonlinear optical properties in asymmetrical Gaussian potential quantum wells[J]. Superlattices and Microstructures, 85, 385-391(2015). http://www.sciencedirect.com/science/article/pii/S0749603615300240

    [16] Guo A X, Du J F. Linear and nonlinear optical absorption coefficients and refractive index changes in asymmetrical Gaussian potential quantum wells with applied electric field[J]. Superlattices and Microstructures, 64, 158-166(2013). http://www.sciencedirect.com/science/article/pii/S0749603613003108

    [17] Xie W. Two interacting electrons in a Gaussian confining potential quantum dot[J]. Solid State Communications, 127, 401-405(2003). http://www.sciencedirect.com/science/article/pii/S0038109803003351

    [18] Gu J, Liang J Q. Energy spectrum analysis of donor-center quantum dots[J]. Acta Physica Sinica, 54, 5335-5338(2005).

    [19] Hai G Q, Peeters F M, Devreese J T. Polaron-cyclotron-resonance spectrum resulting from interface- and slab-phonon modes in a GaAs/AlAs quantum well[J]. Physical Review B, 47, 10358-10374(1993). http://www.ncbi.nlm.nih.gov/pubmed/10005145

    [20] Xiao W, Qi B, Xiao J L. Impurity effect of asymmetric Gaussian potential quantum well qubit[J]. Journal of Low Temperature Physics, 179, 166-174(2015). http://link.springer.com/article/10.1007/s10909-015-1276-z

    [21] Fotue A J, Kenfack S C, Tiotsop M et al. Temperature, impurity and electromagnetic field effects on the transition of a two-level system in a triangular potential[J]. The European Physical Journal Plus, 131, 75(2016). http://link.springer.com/article/10.1140/epjp/i2016-16075-9

    [22] Miao X J, Sun Y, Xiao J L. Effect of impurities on the properties of bound polarons in an asymmetric Gaussian confinement potential quantum well[J]. Journal of the Korean Physical Society, 67, 1197-1200(2015). http://link.springer.com/article/10.3938/jkps.67.1197

    [23] Lee T D, Low F E, Pines D. The motion of slow electrons in a polar crystal[J]. Physical Review, 90, 297-302(1953). http://www.ams.org/mathscinet-getitem?mr=103072

    [24] Pekar S I. Untersuchungen uber die elektronentheorie der kristalle[M]. Berlin: Akademie-Verlag(1954).

    Wei Xin, Hongwu Yin, [in Chinese]. Transition Frequency and Spontaneous Emission Rate in the Asymmetric Gaussian Potential Two-Level System[J]. Acta Optica Sinica, 2019, 39(12): 1223002
    Download Citation