• Photonics Research
  • Vol. 8, Issue 7, 1161 (2020)
Konrad Tschernig1、*, Roberto de J. León-Montiel2, Armando Pérez-Leija1, and Kurt Busch1、3
Author Affiliations
  • 1Max-Born-Institut, 12489 Berlin, Germany
  • 2Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 Cd. Mexico City, Mexico
  • 3Humboldt-Universität zu Berlin, Institut für Physik, AG Theoretische Optik & Photonik, 12489 Berlin, Germany
  • show less
    DOI: 10.1364/PRJ.382831 Cite this Article Set citation alerts
    Konrad Tschernig, Roberto de J. León-Montiel, Armando Pérez-Leija, Kurt Busch. Multiphoton synthetic lattices in multiport waveguide arrays: synthetic atoms and Fock graphs[J]. Photonics Research, 2020, 8(7): 1161 Copy Citation Text show less

    Abstract

    Activating transitions between internal states of physical systems has emerged as an appealing approach to create lattices and complex networks. In such a scheme, the internal states or modes of a physical system are regarded as lattice sites or network nodes in an abstract space whose dimensionality may exceed the systems’ apparent (geometric) dimensionality. This introduces the notion of synthetic dimensions, thus providing entirely novel pathways for fundamental research and applications. Here, we analytically show that the propagation of multiphoton states through multiport waveguide arrays gives rise to synthetic dimensions where a single waveguide system generates a multitude of synthetic lattices. Since these synthetic lattices exist in photon-number space, we introduce the concept of pseudo-energy and demonstrate its utility for studying multiphoton interference processes. Specifically, the spectrum of the associated pseudo-energy operator generates a unique ordering of the relevant states. Together with generalized pseudo-energy ladder operators, this allows for representing the dynamics of multiphoton states by way of pseudo-energy term diagrams that are associated with a synthetic atom. As a result, the pseudo-energy representation leads to concise analytical expressions for the eigensystem of N photons propagating through M nearest-neighbor coupled waveguides. In the regime where N2 and M3, nonlocal coupling in Fock space gives rise to hitherto unknown all-optical dark states that display intriguing nontrivial dynamics.
    idc0dt=f(t)c1(t),(1)

    View in Article

    idcmdt=ωmcm(t)+f(t)(mcm1(t)+m+1cm+1(t)).(2)

    View in Article

    H^=j=1M(βja^ja^j+κj,j1a^j1a^j+κj,j+1a^j+1a^j).(3)

    View in Article

    ida^mdz=βma^m+κm,m1a^m1+κm,m+1a^m+1,(4)

    View in Article

    |Ψ(0)=(a^1(0))n1(a^M(0))nMn1!nM!|0z(m=1MU1,m(z)a^m(z))n1(m=1MUM,m(z)a^m(z))nMn1!nM!|0.(5)

    View in Article

    |1m=|0,,1mthwaveguide,,0,(6)

    View in Article

    iddz|1m=βm|1m+κm,m1|1m1+κm,m+1|1m+1,(7)

    View in Article

    H^=β1a^1a^1+β2a^2a^2+κa^1a^2+κa^1a^2.(8)

    View in Article

    id|m,ndz=(β1m+β2n)|m,n+Cm|m1,n+1+Cm+1|m+1,n1,(9)

    View in Article

    H^=β1a^1a^1+β2a^2a^2+β3a^3a^3+κ1(a^1a^2+a^2a^1)+κ2(a^2a^3+a^3a^2).(10)

    View in Article

    iddz|200=2β1|200+2κ1|110,(11)

    View in Article

    iddz|110=(β1+β2)|110+κ2|101+2κ1(|200+|020),(12)

    View in Article

    iddz|020=2β2|020+2κ1|110+2κ2|011,(13)

    View in Article

    iddz|101=(β1+β3)|101+κ1|011+κ2|110,(14)

    View in Article

    iddz|011=(β2+β3)|011+κ1|101+2κ2(|002+|020),(15)

    View in Article

    iddz|002=2β3|002+2κ2|011.(16)

    View in Article

    |n1,,nM[n1..nM]N+1=n1×(N+1)0++nM×(N+1)M1.(17)

    View in Article

    K^(N,M)=m=1M(N+1)m1n^m,(18)

    View in Article

    K^(N,M)|n1,,nM=K(n1,,nM)|n1,,nM,(19)

    View in Article

    {[2.0.0]3,[1.1.0]3,[0.2.0]3,[1.0.1]3,[0.1.1]3,[0.0.2]3}={2,4,6,10,12,18}.(20)

    View in Article

    |2,0,0=|[2.0.0]3=2=|K1,|1,1,0=|[1.1.0]3=4=|K2,|0,2,0=|[0.2.0]3=6=|K3,|1,0,1=|[1.0.1]3=10=|K4,|0,1,1=|[0.1.1]3=12=|K5,|0,0,2=|[0.0.2]3=18=|K6.(21)

    View in Article

    |Kν=|[n1(ν),,nM(ν)]N+1=|n1(ν),,nM(ν),(22)

    View in Article

    nm(ν)=(Kν/(N+1)m1)#(N+1),(23)

    View in Article

    a^ia^j|n1,,nM=(ni+1)nj|n1,,ni+1,,nj1,,nM.(24)

    View in Article

    Kμ=[n1,,ni+1,,nj1,,nM]N+1=Kν+(N+1)i1(N+1)j1.(25)

    View in Article

    ΔKij=(N+1)i1(N+1)j1=ΔKji,(26)

    View in Article

    Kμ|κija^ia^j|Kν=κij(ni(ν)+1)nj(ν)δKμ,Kν+ΔKij.(27)

    View in Article

    |ΔKij|=|KμKν|.(28)

    View in Article

    iddz|Kμ=m=1Mβmnm(μ)|Kμ+ν=1NFi,j=1Mκij(ni(ν)+1)nj(ν)δKμ,Kν+ΔKij|Kν.(29)

    View in Article

    iddz|Kμ=Nβ|Kμ+ν=1NFi=1M1κi((ni(ν)+1)ni+1(ν)δKμ,KνΔKi+ni(ν)(ni+1(ν)+1)δKμ,Kν+ΔKi)|Kν.(30)

    View in Article

    Aμν(N,M)=Θ(Hμν),(31)

    View in Article

    Aμν(N,M)=Aμν(M1,N+1)N,M,(32)

    View in Article

    Hμν=(0100001011200010010012001200011201000010).(33)

    View in Article

    (λ1,,λ6)=(2,1,0,0,1,2),(34)

    View in Article

    |ϕ3=(120012012)and|ϕ5=12(110011)(35)

    View in Article

    |ψ=12(|ϕ3+|ϕ5)=12(112012120).(36)

    View in Article

    |ψ=12(|200+12|11012|10112|011).(37)

    View in Article

    |ϕn=m=1Mum(n)a^m|0=m=1Mum(n)|Km,(38)

    View in Article

    H^|ϕn=λn|ϕn,(39)

    View in Article

    ϕ^n=m=1Mum(n)a^m.(40)

    View in Article

    |n˜1,,n˜M=m=1Mϕ^mn˜m|0,(41)

    View in Article

    |K˜ν=m=1M(k=1Muk(m)a^k)n˜m(ν)|0.(42)

    View in Article

    cμ(ν)=Kμ|m=1M(k=1Muk(m)a^k)n˜m(ν)|0.(43)

    View in Article

    λ˜ν=m=1Mn˜m(ν)λm.(44)

    View in Article

    Konrad Tschernig, Roberto de J. León-Montiel, Armando Pérez-Leija, Kurt Busch. Multiphoton synthetic lattices in multiport waveguide arrays: synthetic atoms and Fock graphs[J]. Photonics Research, 2020, 8(7): 1161
    Download Citation