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Activating transitions between internal states of physical systems has emerged as an appealing approach to create
lattices and complex networks. In such a scheme, the internal states or modes of a physical system are regarded as
lattice sites or network nodes in an abstract space whose dimensionality may exceed the systems’ apparent
(geometric) dimensionality. This introduces the notion of synthetic dimensions, thus providing entirely novel
pathways for fundamental research and applications. Here, we analytically show that the propagation of multi-
photon states through multiport waveguide arrays gives rise to synthetic dimensions where a single waveguide
system generates a multitude of synthetic lattices. Since these synthetic lattices exist in photon-number space, we
introduce the concept of pseudo-energy and demonstrate its utility for studying multiphoton interference proc-
esses. Specifically, the spectrum of the associated pseudo-energy operator generates a unique ordering of the
relevant states. Together with generalized pseudo-energy ladder operators, this allows for representing the
dynamics of multiphoton states by way of pseudo-energy term diagrams that are associated with a synthetic atom.
As a result, the pseudo-energy representation leads to concise analytical expressions for the eigensystem of N
photons propagating through M nearest-neighbor coupled waveguides. In the regime where N ≥ 2 and
M ≥ 3, nonlocal coupling in Fock space gives rise to hitherto unknown all-optical dark states that display
intriguing nontrivial dynamics. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.382831

1. INTRODUCTION

The concept of synthetic dimensions has recently opened the
door to novel perspectives for expanding the dimensionality of
well-understood physical systems [1–5]. One strategy to ex-
plore synthetic dimensions consists in driving the associated
dynamical systems in order to activate the coupling between
different internal modes, which under normal conditions re-
main uncoupled [6]. By doing so, the resulting coupled modes
exhibit lattice-like structures that exist in an abstract space,
which is nonetheless physical. The importance of synthetic lat-
tices lies in the fact that they allow us to explore a variety of
effects that are not available in spatial or temporal domains.

To illustrate the basic idea of activating synthetic dimen-
sions, and to set the stage for the present work, we begin by
elucidating how a 1D quantum harmonic oscillator generates
a lattice in Fock space. The oscillator’s Hamiltonian is given
as Ĥ � ω�â†â� 1

2
�, and its dynamics is governed by the

Schrödinger equation i∂t jΨ�t�i � Ĥ jΨ�t�i. Here, ω is the

angular frequency of the oscillator, and â and â† denote, respec-
tively, the annihilation and creation operators [7]. Note that we
have set the reduced Planck constant and the oscillator mass to
unity, i.e., ℏ � 1 and mo � 1. When the oscillator is initially
prepared in the eigenstate jΨ�0�i � jni, it will remain in this
state, only acquiring a time-dependent phase factor during
evolution, i.e., jΨ�t�i � e−i�n�

1
2�ωt jni. No transitions to other

eigenstates occur. However, by subjecting the oscillator to a
time-dependent displacement, x̂�t� � f �t��â† � â�, the
Hamiltonian acquires the form Ĥ �t� � ω�â†â� 1

2
� � f �t�·

�â† � â�. Substituting the general state vector jΨ�t�i �P∞
m�0 cm�t�jmi, where cm�t� � hmjÛ �t�jΨ�0�i are the tran-

sition amplitudes from the initial state jΨ�0�i to the final
state jmi and Û �t� is the time evolution operator, into the
Schrödinger equation, we find that the amplitudes cm�t� obey
the semi-infinite set of coupled differential equations

i
dc0
dt

� f �t�c1�t�, (1)
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i
dcm
dt

� ωmcm�t� � f �t�
� ffiffiffiffi

m
p

cm−1�t� �
ffiffiffiffiffiffiffiffiffiffiffiffi
m� 1

p
cm�1�t�

�
:

(2)

These equations clearly illustrate that the time-dependent dis-
placement x̂�t� activates transitions among the amplitudes
cm−1�t�, cm�t�, and cm�1�t�. This implies that, in Fock space,
the oscillator generates a lattice, where it can “hop” from eigen-
state jmi to the adjacent eigenstates jm − 1i and jm� 1i with
hopping rates f �t� ffiffiffiffi

m
p

and f �t� ffiffiffiffiffiffiffiffiffiffiffiffi
m� 1

p
, respectively [8–14].

In general, applying dynamic modulations to the potentials
associated with physical systems induces coupling among
the supported eigenstates. Using this technique, a photonic
topological insulator in synthetic dimensions has been re-
cently implemented via modulated waveguide lattices [15,16].
Synthetic dimensions have also been explored in harmonic
traps [17], optical lattices [18], cavities [19], and even in
room-temperature Rydberg atoms [20].

Within the realm of optics and photonics, synthetic dimen-
sions can be created by exploiting the spatial, temporal, polari-
zation, and frequency degrees of freedom of light [6]. For
instance, large-scale parity-time symmetric lattices have been
implemented in the temporal domain using optical fiber loops
endowed with gain and loss [21,22] and a driven-dissipative
analogon of the 4D quantum Hall effect has been observed
in a spatially 3D resonator lattice [4].

In this work, we show that high-dimensional lattices emerge
in photon-number space when a photonic lattice of M ports
[23,24] is excited by N indistinguishable photons (see
Fig. 1). More precisely, the Fock-representation of N -photon
states in systems composed of M evanescently coupled single-
mode waveguides yields to a new layer of abstraction, where the
associated states can be visualized as the energy levels of a syn-
thetic atom, which features a number of allowed and disallowed
transitions between its energy levels.

In photonic waveguide lattices, where all the waveguides
are coupled to each other, the quantum optical Hamiltonian
in paraxial approximation is given as Ĥ � PM

j�1 βj â
†
j âj�PM

i≠j κijâ
†
i âj [25], where â

†
j and âj, respectively, are bosonic cre-

ation and annihilation operators for photons in the jth wave-
guide. Further, βj denotes the propagation constant of the jth
waveguide, and κij is the coupling coefficient between the ith
and jth waveguides.

For simplicity, we restrict our subsequent analysis to the
simplest scenario of (in real space) essentially 1D waveguide
arrays with nearest-neighbor couplings

Ĥ �
XM
j�1

�
βjâ

†
j âj � κj,j−1â

†
j−1âj � κj,j�1â

†
j�1âj

�
. (3)

Under these premises, the propagation of a single-photon
along the waveguides can be described using the Heisenberg
equations of motion for the bosonic creation operators [26,27]

i
dâ†m
dz

� βmâ†m � κm,m−1â
†
m−1 � κm,m�1â

†
m�1, (4)

where m � 1,…,M . Accordingly, the single-photon response
is computed through the input–output transformation
â†n�0� →

PM
m�1 Un,m�z�â†m�z�, where Un,m�z� denotes the

�n,m� matrix element of the evolution operator Û �z� �
exp�−izĤ � [28]. Using this formalism, it is straightforward to
show that an initial N -photon state jn1, n2,…, nM i, with
N � PM

m�1 nm, will transform into the output state

jΨ�0�i � �â†1�0��n1…�â†M �0��nMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1!…nM !

p j0i

!z
�PM

m�1U 1,m�z�â†m�z�
�
n1…

�PM
m�1UM ,m�z�â†m�z�

�
nM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1!…nM !

p j0i:

(5)

In the context of waveguide lattices, the input–output formalism
is by far the most common approach used to compute the output
states [29]. Nonetheless, as we will demonstrate in the remainder
of the paper, the input–output scheme fails to expose the intrinsic
coupling interactions between the emerging states.

In what follows, we use the equivalent Schrödinger-picture
formalism to unveil the high-dimensional lattice structures aris-
ing from the propagation of multiple photons through multi-
port waveguide systems. To do so, we first notice that N
indistinguishable photons excitingM coupled waveguides, give
rise to a total of NF � �N �M − 1�!∕�N !�M − 1�!� states
which are given by all permutations of the integer partitions
of N among the M sites.

For the trivial case of N � 1 photon, we simply obtain a set
of M states

j1mi � j0,…, 1|{z}
m’th waveguide

,…, 0i, (6)

with m � 1,…,M . By computing the matrix elements of
the Hamiltonian given in Eq. (3) for N � 1, Hn,m �
h1njĤ j1mi � βnδn,m � κn,m−1δn,m−1 � κn,m�1δn,m�1, one can
readily see that the single-photon states are coupled to each
other as displayed by the equations

i
d

dz
j1mi � βmj1mi � κm,m−1j1m−1i � κm,m�1j1m�1i, (7)

in agreement with Eq. (4).
We now consider the more interesting scenario of N pho-

tons propagating through a waveguide beam splitter, M � 2,
with propagation constants β1 and β2 and symmetric coupling,
i.e., κ1,2 � κ2,1 ≡ κ. In this case, there exists a total of �N � 1�
states, namely, �j0,N i, j1,N − 1i,…, jN − 1, 1i, jN , 0i�, and
the Hamiltonian given in Eq. (3) acquires the form

Fig. 1. 1D array of M identical nearest-neighbour evanescently
coupled waveguides with coupling coefficients κm,m�1.
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Ĥ � β1â
†
1â1 � β2â

†
2â2 � κâ†1â2 � κâ1â

†
2: (8)

Computing the matrix elements Ĥ �m,n�,�p,q� �
hm, njĤ jp, qi reveals that the states obey the �N � 1� equa-
tions of motion

i
djm, ni
dz

� �β1m� β2n�jm, ni � Cmjm − 1, n� 1i

� Cm�1jm� 1, n − 1i, (9)

with Cm � κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�n� 1�

p
and n � N − m [30]. This indicates

that, inside a waveguide beam splitter, the amplitudes of
two-mode N -photon states evolve coupled to each other with
hopping rates Cm, and the corresponding phases depend on
both propagation constants.

For the case of two identical waveguides, we have
β1 � β2 � β so that the first term on the r.h.s. of Eq. (9) be-
comes βN jm,N − mi, which indicates that all the states will
exhibit the same effective propagation constant. Interestingly,
it has been recently shown that waveguide beam splitters pro-
duce the discrete fractional Fourier transform (DFrFT) of
N -photon states [30] as well as exceptional points of arbitrary
order, provided that losses are introduced in one of the wave-
guides [31].

On the other hand, when considering two nonidentical
waveguides, β1 ≠ β2, the first term on the r.h.s. of Eq. (9) ac-
quires the form ��β1 − β2�m� β2N �jm,N − mi. Remarkably,
the term ��β1 − β2�m� indicates that the state evolution will be
influenced by an effective ramping potential in the same fash-
ion as in the case of classical waves in Bloch oscillator systems
[12,32,33]. Consequently, we can tailor the dynamics of
N -photon states by simply adjusting the Bloch slope �β1 − β2�
in order to suppress and/or create certain output states. As an
illustration, we depict in Fig. 2 the probability evolution for
the initial state j5, 5i in a waveguide beam splitter with
coupling coefficient κ � 1 for β1 � β2 � 1 [Fig. 2(a)] and
for β1 � 0, β2 � 4 [Fig. 2(b)]. While the case of Fig. 2(a)

corresponds to discrete “diffraction” of the initial state in state
space, the case of Fig. 2(b) corresponds to “Bloch oscillations”
in state space. Note that, throughout this work, we present all
simulations using the normalized propagation coordinate
z � κZ , where Z is the actual propagation distance, and κ
stands for the nearest-neighbor coupling coefficient. After
the above introductory examples, we now proceed to consider
the most interesting case where multiple photons N > 1 excite
more than two waveguides M > 2. In order to motivate the
concept of pseudo-energy, we first examine the simplest case
of a waveguide trimer, M � 3, that is excited by N � 2 pho-
tons and then move on to the general case.

For a waveguide trimer and two identical photons, the
Hamiltonian takes the form

Ĥ � β1â
†
1â1 � β2â

†
2â2 � β3â

†
3â3 � κ1�â†1â2 � â†2â1�

� κ2�â†2â3 � â†3â2�: (10)

In this scenario, we have a total of six photon-number states
obeying the following coupled set of equations of motion:

i
d

dz
j200i � 2β1j200i �

ffiffiffi
2

p
κ1j110i, (11)

i
d

dz
j110i � �β1 � β2�j110i � κ2j101i �

ffiffiffi
2

p
κ1�j200i

� j020i�, (12)

i
d

dz
j020i � 2β2j020i �

ffiffiffi
2

p
κ1j110i �

ffiffiffi
2

p
κ2j011i, (13)

i
d

dz
j101i � �β1 � β3�j101i � κ1j011i � κ2j110i, (14)

i
d

dz
j011i � �β2 � β3�j011i � κ1j101i �

ffiffiffi
2

p
κ2�j002i

� j020i�, (15)

i
d

dz
j002i � 2β3j002i �

ffiffiffi
2

p
κ2j011i: (16)

As in the earlier examples, here we also have the possibility
of molding the state dynamics via tuning the propagation
constants and coupling coefficients. For instance, for equal
coupling coefficients κ1 � κ2 � 1 and identical waveguides
β1 � β2 � β3 � 0, we observe periodic spreading and con-
traction of the two-photon wave function, as illustrated in
Fig. 3(a). In contrast, choosing a different propagation constant
for the central waveguide, β2 � 2, leads to a quasi-periodic evo-
lution [Fig. 3(b)]. Indeed, this quasi-periodic evolution occurs
because the ratios between the eigenvalues of the coupling ma-
trix are irrational numbers. We would like to emphasize that,
at the propagation distance indicated by the dashed line in
Fig. 3(b), the input state j101i evolves into a quasi-two-photon
NOON state in state space, which is reminiscent of the Hong–
Ou–Mandel effect [34].

Fig. 2. Probability distribution jhm,N − mjÛ �z�jψ�0�ij2 for the
initial state jψ�0�i � j5, 5i propagating through a waveguide beam
splitter with (a) β1 � β2 � 1 (discrete “diffraction” in state space)
and (b) β1 � 0 and β2 � 4 (“Bloch oscillations” in state space).

Research Article Vol. 8, No. 7 / July 2020 / Photonics Research 1163



To describe the photon dynamics in the waveguide trimer,
we have obtained an even number of equations. At this point,
the way in which the states should be arranged into a synthetic
lattice is not at all clear. To be precise, the six states representing
the sites of the synthetic lattice can be sorted into at least two
distinct natural sequences, as shown in Table 1.

Clearly, arranging the states into a lattice (i.e., sorting) and
analyzing the corresponding equations of motion becomes
rather cumbersome when considering higher photon numbers
in multiple coupled waveguides. In the following section, we
therefore introduce a concise and universal method that facil-
itates studying the general case of N > 1 photons propagating
in arrays formed by M > 2 waveguides. The resulting struc-
tures follow from physical and mathematical considerations
that eventually allow us to describe multiphoton processes
in waveguide arrays in a surprising and remarkable way that
resembles the quantum-mechanical description of multilevel
atoms.

2. PSEUDO ENERGY REPRESENTATION

We now introduce a concept analogous to the concept of en-
ergy, which we refer to as pseudo-energy. As we show below, the
concept of pseudo-energy is rather useful since it facilitates
a unique sorting of multiphoton Fock states in a physically
meaningful way and allows for establishing correspondence
between Fock states and the energy levels of a synthetic atom.
Concurrently, we identify pseudo-energy ladder operators along
with pseudo-exchange energies in order to define the corre-
sponding selection rules in Fock space for transitions between
the pseudo-energy levels of the synthetic atom.

We consider N indistinguishable photons propagating in an
array of M lossless evanescently coupled waveguides, which
give rise to NF � �N �M − 1�!∕�N !�M − 1�!� Fock states
jn1,…, nM i, fulfilling the condition PM

m�1 nm � N . The first
issue to be addressed is to determine a way to sort the multi-
photon states in Fock space in a meaningful way. To do so, we
associate a unique numerical value to every state jn1,…, nM i as
follows:

jn1,…,nM i ⇒ �n1:…:nM �N�1

� n1 × �N �1�0��� ��nM × �N �1�M−1: (17)

Here, the subscript N � 1 indicates that the numbers in the
square brackets have to be expressed in base N � 1, and the
least-significant digit is the left-most number n1. Observing
that �n1,…, nM �N�1 �

PM
m�1 �N � 1�m−1nm allows us to

define the pseudo-energy operator

K̂ �N ,M � �
XM
m�1

�N � 1�m−1n̂m, (18)

such that its action on the N -photon–M -mode Fock states
jn1,…, nM i yields

K̂ �N ,M �jn1,…, nM i � K �n1,…, nM �jn1,…, nM i, (19)

with eigenspectrum K �n1,…, nM � � PM
m�1 �N � 1�m−1nm.

From Eq. (19), we readily infer the smallest and largest
eigenvalues K min � K �N , 0,…, 0, 0� � �N :0:…:0.0�N�1 �
N and K max � K �0, 0,…, 0,N � � �0.0:…:0.N �N�1 �
N �N � 1�M−1, respectively. Accordingly, the eigenvalues are
bounded by K min ≤ K ν ≤ K max.

As a result, in order to sort the associated Fock states, we
have to compute the corresponding K ν and arrange them in
ascending order. The resulting ladder of K ν then defines the
synthetic lattice formed by the states. We refer to this ordering
as the pseudo-energy representation of the N -photon–
M -mode Fock states.

For illustration, we revisit the above case of N � 2 photons
propagating in an array of M � 3 waveguides. Accordingly,
there are NF � 6 states, and the spectrum of the pseudo-
energy operator K̂ �2,3� comprises six integers:

f�2.0.0�3, �1.1.0�3, �0.2.0�3, �1.0.1�3, �0.1.1�3, �0.0.2�3g
� f2, 4, 6, 10, 12, 18g: (20)

Using these numbers, we readily obtain the pseudo-energy rep-
resentation of the two-photon–three-mode Fock space:

j2, 0, 0i � j�2.0.0�3 � 2i � jK 1i,
j1, 1, 0i � j�1.1.0�3 � 4i � jK 2i,
j0, 2, 0i � j�0.2.0�3 � 6i � jK 3i,
j1, 0, 1i � j�1.0.1�3 � 10i � jK 4i,
j0, 1, 1i � j�0.1.1�3 � 12i � jK 5i,
j0, 0, 2i � j�0.0.2�3 � 18i � jK 6i: (21)

Consequently, we designate K ν as the pseudo-energy of the νth
Fock state in the N -photon–M -mode Fock space

jK νi � j�n�ν�1 ,…, n�ν�M �N�1i � jn�ν�1 ,…, n�ν�M i, (22)

Table 1. Possible Lattice Configurations for States
Arising in a Waveguide Trimer Excited by Two Photons

j2, 0, 0ij1, 1, 0ij0, 2, 0ij1, 0, 1ij0, 1, 1ij0, 0, 2i
j2, 0, 0ij1, 1, 0ij1, 0, 1ij0, 2, 0ij0, 1, 1ij0, 0, 2i

Fig. 3. Probability distribution jhn1, n2, n3jÛ �z�jψ�0�ij2 for the in-
itial state jψ�0�i � j1, 0, 1i propagating through a balanced three-
waveguide beam splitter (κ1 � κ2 � 1) with (a) β1 � β2 � β3 � 0
and (b) β1 � β3 � 0 and β2 � 2. At the dotted horizontal line,
the state has evolved almost exactly into a two-photon NOON state
in state space.
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with ν � 1,…,NF . In general, for any given N , M , and
pseudo-energy K ν, the inverse mapping onto the mode-
occupation numbers is

n�ν�m � �K ν∕�N � 1�m−1�#�N � 1�, (23)

where the symbol / corresponds to integer division and # is the
modulo operator.

We now proceed to show how the pseudo-energy represen-
tation of Fock states allows us to express the equations of
motion of N photons in M waveguides in a concise way.
To do so, we take a closer look at the action of the operator
â†i âj on a Fock state:

â†i âjjn1,…, nM i

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ni � 1�nj

q
jn1,…, ni � 1,…, nj − 1,…, nM i: (24)

If the state jn1,…, nM i corresponds to the pseudo-energy K ν,
then the resulting state on the r.h.s. of Eq. (24) must have the
pseudo-energy

K μ � �n1,…, ni � 1,…, nj − 1,…, nM �N�1

� K ν � �N � 1�i−1 − �N � 1�j−1: (25)

Therefore, the action of â†i âj changes the pseudo-energy of
Fock states by the amount

ΔK ij � �N � 1�i−1 − �N � 1�j−1 � −ΔK ji, (26)

which we denote as the pseudo-exchange energy associated with
the tunneling process taking place between waveguides i and j.
In this sense, the operators â†i âj can be thought of as pseudo-
energy ladder operators, which raise or lower the pseudo-energy
of Fock states. Consequently, we can write

hK μjκij â†i âjjK νi � κij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n�ν�i � 1�n�ν�j

q
δK μ,K ν�ΔK ij

: (27)

The physical significance of Eq. (27) is that a direct transition
between the states jK μi and jK νi is only possible if there exists
a pseudo-exchange energy ΔK ij such that

jΔK ijj � jK μ − K νj: (28)

Obviously, Eq. (28) defines the selection rules in Fock space.
Together with the action of the photon number operators n̂m,
the full system of coupled equations governing the propagation
of N photons through M coupled waveguides in the pseudo-
energy representation is given by

i
d

dz
jK μi �

XM
m�1

βmn
�μ�
m jK μi

�
XNF

ν�1

XM
i, j�1

κij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n�ν�i � 1�n�ν�j

q
δK μ,K ν�ΔK ij

jK νi: (29)

For the case of nearest-neighbour coupled, identical wave-
guides, where all the propagation constants are the same,
the relevant pseudo-exchange energies are ΔK i � ΔK i�1,i �
N �N � 1�i−1, and the set of coupled equations reduces to

i
d

dz
jK μi � NβjK μi

�
XNF

ν�1

XM−1

i�1

κi

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n�ν�i � 1�n�ν�i�1

q
δK μ,K ν−ΔK i

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�ν�i �n�ν�i�1 � 1�

q
δK μ,K ν�ΔK i

�
jK νi: (30)

To further illustrate the resulting coupling system in Fock
space, we revisit the case of a single photon N � 1 propagating
in M � 3 waveguides. The effective coupling behavior, of
allowed and forbidden transitions in Fock space, can now be
visualized within a pseudo-energy term diagram, as illustrated
in Fig. 4(a). In this particular case, the nearest-neighbour cou-
pling of the waveguides is retained in Fock space, and any given
Fock state jK νi only couples to its nearest neighbors jK ν	1i.

A similar picture arises in the case of two waveguidesM � 2
and N � 2 photons, as depicted in Fig. 4(b). Here, we obtain
a term diagram that is essentially isomorphic to Fig. 4(a),
where, again, only nearest-neighbor Fock states are coupled
to each other.

The nearest-neighbor picture radically changes when apply-
ing the pseudo-energy approach to the case of N � 2 photons
andM � 3 waveguides, as displayed in the corresponding term
diagram in Fig. 4(c). Importantly, even when the waveguides
are, in real space, only coupled to their nearest neighbors, in
photon number space certain states become coupled to next-
nearest neighbor states. For instance, in Fig. 4(c), we observe
that the state jK 2i � j4i � j1, 1, 0i not only couples to its
neighbors jK 1i � j2i � j2, 0, 0i and jK 3i � j6i � j0, 2, 0i
but also to the next-nearest neighbor state jK 4i � j10i �
j1, 0, 1i. For illustrative purposes, we present in Fig. 5 the
coupling matrix for this particular set of states when the
three-waveguide system is formed by identical waveguides,
β1 � β2 � β3 � 0, and balanced coupling coefficients
κ1 � κ2 � 1.

At this point, it is rather evident that the richness and com-
plexity of the emerging synthetic configurations will become
more prominent when a larger number of photons and wave-
guides are considered. Moreover, it is worth stressing that, in
order to generate the present synthetic structures, we did not

(a)

(b)

(c)

Fig. 4. Pseudo-energy term diagrams for (a) N � 1 photon in
M � 3 coupled waveguides, (b) N � 2 photons in M � 2 coupled
waveguides, and (c) N � 2 photons in M � 3 waveguides.
Horizontal lines symbolize the different Fock states; vertical arrows
indicate allowed transitions along with the corresponding pseudo-
exchange energy.
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require any modulation of the system parameters, as the states
naturally couple due to the system’s internal dynamics.

3. NONPLANAR SYNTHETIC LATTICES:
FOCK GRAPHS

In this section, we introduce a more convenient way of
representing the Hamiltonian matrix of N -photons exciting
M -waveguides. To do so, we interpret the states as vertices
of a graph (Fock graph) where the allowed interstate transitions
represent the edges. A practical representation of finite graphs is
the so-called adjacency matrix whose entries indicate whether
or not pairs of vertices are adjacent. In the present context, the
effective Hamiltonian H μν � hK μjĤ jK νi in the N -photon–
M -mode pseudo-energy representation determines such an
adjacency matrix

A�N ,M �
μν � Θ�H μν�, (31)

where Θ is the step function, and A�N ,M �
μν � 1 �or 0� indicates

a connection (or no connection) between the vertices μ and
ν. In what follows, we assume identical waveguides with
β1 � � � � � βM � 0 in order to omit self-loops in the graph
representation. As an example, in Fig. 6(a), we depict the
Fock graph arising from the effective Hamiltonian of Fig. 5,
which we have already discussed in the previous section. In
Fig. 7(a), we depict further examples for photon numbers
up to N � 5 and up to M � 6 waveguides. The first row,
which corresponds to single-photon graphs, simply reflects
the 1D spatial configuration of the waveguides. By introducing
a second photon, we observe that the Fock graphs become 2D
[Fig. 7(b)], except for the case M � 2. The inclusion of more
photons leads to nonplanar graphs, i.e., graphs that cannot be
drawn in 2D without intersecting edges, which exhibit a lay-
ered structure in three dimensions as indicated by the different
coloring of the nodes in different layers.

A prominent feature to highlight is the symmetry observed
among graphs emerging for the combinations �M ,N � and
�M − l ,N � l� and for �M ,N � and �M � l ,N − l�, where
l is an integer. In other words, every Fock graph has an isomor-
phic partner graph

A�N ,M �
μν � A�M−1,N�1�

μν ∀N ,M , (32)

with an identical adjacency matrix, up to a trivial permutation
of the node labels. In Fig. 7(b), we depict the smallest nontrivial
pair of Fock graphs and the corresponding adjacency matrices
that are induced by the pseudo-energy representation. If we
were to start from A�3,3�

μν and permute its rows and columns
according to �1,…, 10� → �1, 2, 4, 7, 3, 5, 8, 6, 9, 10�, we will
exactly obtain A�2,4�

μν .
Indeed, this underlying symmetry in the space of possible

Fock graphs has interesting implications. For instance, in
Ref. [30] we have shown that it is possible to implement
the number-resolved (N � 1)-dimensional discrete fractional
Fourier transform (DFrFT) with a single waveguide beam split-
ter by launching N indistinguishable photons. Furthermore,
using the same photon-number-resolved mapping in Ref. [31],
we have shown how to attain so-called exceptional points of
N � 1 order, by way of exciting a semi-lossy waveguide beam
splitter with high photon number states. In fact, it is now clear
that these results emerge as special cases of Eq. (32), which per-
tains to the identity of the first row and column in Fig. 7(a).
Thus, by following similar ideas, it is possible, in principle, to
find the corresponding effects for waveguide systems with
M ≥ 3 excited by N ≥ 2 photons.

Additionally, by exploiting the graph symmetry, it becomes
apparent that a specific transformation, which requires N pho-
tons and M waveguides could likewise be implemented with
M − 1 photons and N � 1 waveguides. Of course, such alter-
native pathways of implementing a transformation are not
always guaranteed because of the different dimensions of the
experimentally accessible parameter spaces. Nonetheless, this
may serve as a useful Ansatz to overcome concrete experimental
difficulties.

Quite interestingly, Wang et al. explored synthetic Fock lat-
tices in the context of QED circuits [19]. In such a study, the
joint excitation states of an atom coupled to the N -photon
three-cavity Fock space form a 2D, hexagonal Haldane-like
synthetic lattice, which facilitates the generation of high-
photon-number NOON states. Crucially, the realization of this
scheme demands the judicious implementation of the coupling

Fig. 5. Matrix components of the effective Hamiltonian H μν for
N � 2 photons propagating in M � 3 identical, nearest-neighbor-
coupled waveguides (β1 � β2 and κ1 � κ2 � 1).

(a) (b)

Fig. 6. (a) 2D Fock graph forM � 3 waveguides excited by N � 2
indistinguishable photons. The corresponding adjacency matrix is in-
duced by the effective Hamiltonian in Fig. 5 according to Eq. (31).
(b) Sample trial implementation of the �M � 3,N � 2� Fock graph
for a single photon and six waveguides arranged in 2D. Dotted lines
indicate additional crosstalk between the waveguides, which is topo-
logically unavoidable in this and any other real-space configuration
that we have considered. Therefore, to the best of our knowledge,
the synthetic coupled structure in (a) cannot be implemented in
the single-photon regime.
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between atom and cavity as well as the precise modulation of
the cavity resonance frequencies. In contrast, the multiphoton
synthetic dimensions explored in the present work are intrinsi-
cally active by virtue of the indistinguishability of the photons;
as such, they do not require any external driving of the system’s
parameters.

The Fock graphs offer a rich variety of synthetic coupled
structures. This variety can be further enhanced by considering
different spatial arrangements of the waveguides, for instance,
ring- or star-shaped structures instead of the simple planar
configuration studied here. Importantly, the evolution of multi-
photon states in synthetic lattices and graphs can be dynami-
cally reconfigured by using programmable photonic chips [35],
that is, integrated optical devices where the waveguides’ refrac-
tive index and coupling coefficients can be modified externally.
Nevertheless, even with this simple 1D arrangement compris-
ing a few waveguides, small photon numbers, and a time-
independent Hamiltonian, one encounters interesting effects
that are only possible due to the multidimensionality of the
corresponding Fock graphs.

4. ALL-OPTICAL DARK STATES AND PARALLEL
QUANTUM RANDOM WALKS

To show possible applications of the pseudo-energy synthetic
lattices, we discuss the generation of all-optical dark states [36]
and parallel multiphoton quantum random walks. The simplest
dark states are encountered in three-level atomic or molecular
systems, where radiative transitions between, e.g., j1i ↔ j2i ↔
j3i, are allowed, but the transition j1i ↔ j3i is forbidden. In

this simple scenario, a dark state is a superposition of the un-
coupled states jDi � cos�θ�j1i − sin�θ�j3i, where θ is given in
terms of the Rabi frequencies of the allowed transitions [36].
Once the system is in such a state, adiabatic changes in the Rabi
frequencies allow for the tuning of the populations of the states
j1i and j3i, while the probability of j2i remains 0. This inter-
esting behavior, which seemingly evades the radiative selection
rules, forms the basis of the method of stimulated Raman adia-
batic passage (STIRAP) and has been applied in a variety of
physical contexts, such as atoms, molecules, electrons, photons,
magnons, and phonons [37]. In what follows, we demonstrate
that combining the principles of STIRAP with the pseudo-
energy representation of Fock states allows the generation of
complex all-optical dark states, i.e., classes of physical multi-
photon states in waveguide arrays that are immune to discrete
diffraction effects. These states obviously lend themselves to
numerous applications in quantum information science [36].

To do so, we revisit one more time the case ofM � 3 wave-
guides, with equal propagation constants β1 � β2 � β3 � 0
and balanced coupling coefficients κ1 � κ2 � 1ffiffi

2
p , excited by

N � 2 photons. The pseudo-energy representation of the
effective Hamiltonian takes the form

H μν �

0
BBBBBBB@

0 1 0 0 0 0

1 0 1 1ffiffi
2

p 0 0

0 1 0 0 1 0

0 1ffiffi
2

p 0 0 1ffiffi
2

p 0

0 0 1 1ffiffi
2

p 0 1

0 0 0 0 1 0

1
CCCCCCCA
: (33)

Fig. 7. (a) Overview of several 2D and 3D embeddings of Fock graphs A�N ,M �
μ,ν for M � 2,…, 6 waveguides excited by N � 1,…, 5 indis-

tinguishable photons. Different node colors indicate layer-like structures that emerge for N ≥ 3,M ≥ 4 (all nodes in the same layer feature
the same color). For readability, we have omitted the node labels as well as the graphs for M ≥ 5,N ≥ 4. (b) Smallest example of an isomorphic
pair of planar Fock graphs with N � 2,M � 4 and N � 3,M � 3, respectively.
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With these parameters, the spectrum of H μν is integer-valued

�λ1,…, λ6� � �−2, −1, 0, 0, 1, 2�, (34)

which indicates that the third and fourth eigenstates are degen-
erate with eigenvalues λ3 � λ4 � 0. We now consider the evo-
lution of a coherent superposition jψi of the eigenstates

jϕ3i �

0
BBBBBBBB@

1
2

0

0

− 1ffiffi
2

p

0
1
2

1
CCCCCCCCA

and jϕ5i �
1

2

0
BBBBBBBB@

1

1

0

0

−1

−1

1
CCCCCCCCA

(35)

with corresponding eigenvalues λ3 � 0 and λ5 � 1, specifically

jψi � 1ffiffiffi
2

p �jϕ3i � jϕ5i� �
1ffiffiffi
2

p

0
BBBBBBBB@

1
1
2

0

− 1ffiffi
2

p

− 1
2

0

1
CCCCCCCCA
: (36)

In the standard Fock representation, jψi reads as

jψi � 1ffiffiffi
2

p
�
j200i � 1

2
j110i − 1ffiffiffi

2
p j101i − 1

2
j011i

�
: (37)

The probability evolution for this state is shown in Fig. 8.
As one can see, this state displays the characteristic behavior
of a dark state. That is, the initial state evolves exhibiting
oscillating transitions between the states j200i and j002i with
period 2π

λ5−λ3
� 2π. These transitions occur in spite of the

fact that the direct transition j200i ↔ j002i is forbidden
�h200jĤ j002i � 0�, and those states have the maximum pos-
sible distance within the graph, that is, at least four single-
photon tunneling processes are required to transform one state
into the other. All probabilities of the intermediate states re-
main constant and, in a way, assist the simultaneous tunneling
of two photons between the outermost waveguides. We stress
that this six-level dark state is induced by a time-independent
Hamiltonian; further, it occurs naturally without the need of
adiabatic fine-tuning of the external parameters. We would also

like to note that the state j020i exhibits zero probability for all
z, further attesting a multiphoton tunneling (in this case co-
tunneling) effect taking place between the two waveguides.
Geometrically speaking, this effect arises due to destructive
interference taking place in the two-way branching of the
Fock graph shown in Fig. 6(a). This branching effectively
allows for the flow of the amplitudes to take a “detour” around
the j020i node.

As an alternative, one may attempt to implement a real space
structure in one or two dimensions consisting of six coupled
waveguides in order to emulate an equivalent Hamiltonian
for just a single photon; in Fig. 6(b), we depict one such at-
tempt. However, this would be topologically impossible since
there always exists additional crosstalk between the waveguides
representing the nodes at the center of the graph. Furthermore,
from a mathematical point of view, the dark-state behavior of
jψi is based on a critical relationship between the components
u�3�n and u�5�n (n indicating the row of the element) of the non-
degenerate eigenvectors jϕ3i and jϕ5i. Specifically, as one can
see in Eq. (35), the interference terms In � u�3�
n u�5�n �
u�5�
n u�3�n � 0 vanish for all n, except for n � 1 and n � 6.
Consequently, the probabilities of the pseudo-energy states
jK 2i,…, jK 5i remain constant during propagation. From this,
we conclude that a coupled structure can only support all-
optical dark states if there exist pairs of nondegenerate eigen-
states, whose mutual interference terms vanish except for two
components. Thus far and despite intense efforts, we have only
been able to observe this specific property in Fock graphs with
N ≥ 2, M ≥ 3. In other words, our Fock graph analysis of
multiphoton propagation in waveguide arrays allows the reali-
zation of functionalities beyond those that can be realized with
planar (single-photon) networks.

Quite interestingly, exciting waveguide lattices with multi-
photon states comprising infinite coherent superpositions,
e.g., coherent states jαi � exp�−jαj2∕2�P∞

n�0�αn∕
ffiffiffiffi
n!

p �jni
or two-mode squeezed vacuum states jξi �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jξj2

p
·P∞

n�0 ξ
njn, ni, opens a route to generating, in principle, an

infinite number of lattices or graphs with different numbers
of lattice sites and many dimensions simultaneously. This
possibility is appealing for realizing parallel quantum random
walks where the corresponding walkers can perform different
numbers of steps on different Fock graphs that depend on
the number of photons involved in each process.

We stress that the observation of the above effects is possible
by utilizing on-chip direct laser-written waveguides [38], which
are fed by bright parametric downconversion light in combina-
tion with photon-number-resolving detectors [39]. This type of
waveguide can be designed to work at the typical wavelengths
of 815 nm as well as 1500 nm; further, waveguide-coupling
strengths can be engineered to range from κ � 0.5 cm−1 up
to κ � 2.5 cm−1. Moreover, such photonic chips can be easily
implemented to host a large number of waveguides with effec-
tive propagation distances ranging from several micrometers up
to 15 cm [24]. As multiphoton sources, nonlinear periodically
poled potassium titanyl phosphate (ppKTP) waveguides are
available. Using such systems, the generation of two-mode
quantum light with a mean photon number of 50 and a maxi-
mum number of 80 photons for each of the two modes has

Fig. 8. Evolution of the probabilities jhK νjÛ �z�jψij2 of the state
jψi as defined in Eq. (37).
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been demonstrated recently [40]. Finally, in order to translate
the pseudo-energy states into real-space measurements, we
require to resolve the number of photons in each waveguide.
This may be achieved via so-called photon-number-resolving
transition edge sensors, i.e., superconducting devices capable
of detecting visible and near-infrared light at the single-photon
level [41].

5. EIGENDECOMPOSITION IN THE PSEUDO-
ENERGY REPRESENTATION

In this final section, we obtain an analytical expression for the
eigensystem of an M-waveguide system (or tight-binding net-
work) with arbitrary coupling coefficients κm excited by N
indistinguishable photons. With the help of the pseudo-energy
representation, we will be able to find a concise expression,
which also introduces a natural ordering of the N -photon–
M -waveguide eigenstates. As we have seen, in the case of a
single-photon N � 1, the Hamiltonian takes on a bi-diagonal
form in the pseudo-energy representation. In some cases, it is
possible to find an analytical closed-form expression for the
eigensystem, as for example in the case of the DFrFT [42].
Even if no analytical solution is available, numerical algorithms
are known [43] that deal with bi-diagonal matrices efficiently.
Therefore, without loss of generality, we assume that we know
the complete eigensystem of the single-photon–M -waveguide
Hamiltonian, which we denote as

jϕni �
XM
m�1

u�n�m â†mj0i �
XM
m�1

u�n�m jK mi, (38)

Ĥ jϕni � λnjϕni, (39)

where n � 1,…,M . In the above equation, u�n�m is the mth
component of the nth eigenvector of the matrix Ĥm,n �
hK mjĤ jK ni, and it defines the single-particle eigenstates

ϕ̂†
n �

XM
m�1

u�n�m â†m: (40)

When the same waveguide system is excited by N > 1 pho-
tons, it is clear that the many-particle eigenstates arise from
the tensor products of the single-particle eigenstates. Formally,
we may write the resulting states as

jñ1,…, ñM i �
YM
m�1

ϕ̂†ñm
m j0i, (41)

but now the occupation numbers ñm pertain to the number
of photons occupying the mth single-particle eigenmode.
Consequently, we can apply the pseudo-energy ordering to the
N -particle eigenstates by defining K̃ ν � �ñ�ν�1 ,…, ñ�ν�M �N�1.
The νth eigenstate of the N -photon system is then given by

jK̃ νi �
YM
m�1

�XM
k�1

u�m�k â†k

�ñ�ν�m

j0i: (42)

Note that, in most cases, it is necessary to normalize the result-
ing expression on the r.h.s. of Eq. (42). By requiring

jK̃ νi �
PNF

μ�1 c
�ν�
μ jK μi, where jK μi denotes N -photon–

M -waveguide Fock states, we find for the components c�ν�μ

c�ν�μ � hK μj
YM
m�1

�XM
k�1

u�m�k â†k

�ñ�ν�m

j0i: (43)

It is now rather straightforward to show that the N -particle
eigenvalues are given as the sum of the eigenvalues of the
involved single-particle eigenstates

λ̃ν �
XM
m�1

ñ�ν�m λm: (44)

Using Eqs. (42) and (44), it is straightforward to find the
N -photon–M -waveguide time-evolution operator Û �t� �PNF

ν�1 e
−iλ̃νt jK̃ νihK̃ νj. We would like to emphasize that the

numerical evaluation of Eq. (42) is far more efficient than
the direct diagonalization of the full matrix representation of
Ĥ in N -photon–M -waveguide Fock space. Due to the size
and highly nontrivial structure of the resulting matrices, general
eigensystem solvers produce a significant amount of overhead,
which we avoid in our approach. Essentially, we do not even
require a calculation of the full matrix representation H μν.
Instead, knowledge of the single-particle eigensystem and
the bosonic nature of photons suffices.

6. CONCLUSION

In summary, we have shown that the propagation of multipho-
ton states through multiport waveguide systems (tight-binding
networks) gives rise to multiple synthetic lattices and multidi-
mensional Fock graphs that allow for transparent analyses of the
relevant physical processes and the design of novel functional-
ities, such as multilevel all-optical dark states, beyond the linear
(single-photon) realm. Since such synthetic structures emerge
in the photon-number space, we have been able to associate
coherent multiphoton processes to parallelized multidimen-
sional quantum random walks. This parallelization brings
about novel opportunities for the implementation of random
walks, where the randomness is not only present in the dynam-
ics of the walkers but also in the simultaneous occurrence of
different walks.
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