• Photonics Research
  • Vol. 12, Issue 2, 369 (2024)
Rui Liu1, Zhiyong Liu1、*, Chengxu Lin1, Guangda Niu2, Xuning Zhang1, Bo Sun3, Tielin Shi1, and Guanglan Liao1、4
Author Affiliations
  • 1State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 3School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • 4e-mail: guanglan.liao@hust.edu.cn
  • show less
    DOI: 10.1364/PRJ.501477 Cite this Article Set citation alerts
    Rui Liu, Zhiyong Liu, Chengxu Lin, Guangda Niu, Xuning Zhang, Bo Sun, Tielin Shi, Guanglan Liao. Indium-doped perovskite-related cesium copper halide scintillator films for high-performance X-ray imaging[J]. Photonics Research, 2024, 12(2): 369 Copy Citation Text show less
    References

    [1] H. Tsai, F. Liu, S. Shrestha. A sensitive and robust thin-film X-ray detector using 2D layered perovskite diodes. Sci. Adv., 6, eaay815(2020).

    [2] V. B. Mykhaylyk, H. Kraus, M. Saliba. Bright and fast scintillation of organolead perovskite MAPbBr3 at low temperatures. Mater. Horiz., 6, 1740-1747(2019).

    [3] M. Zhang, X. Wang, B. Yang. Metal halide scintillators with fast and self-absorption-free defect-bound excitonic radioluminescence for dynamic X-ray imaging. Adv. Funct. Mater., 31, 2009973(2020).

    [4] S. Deumel, A. van Breemen, G. Gelinck. High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites. Nat. Electron., 4, 681-688(2021).

    [5] J. Zhao, L. Zhao, Y. Deng. Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays. Nat. Photonics, 14, 612-617(2020).

    [6] M. J. Weber. Inorganic scintillators: today and tomorrow. J. Lumin., 100, 35-45(2002).

    [7] P. Lecoq. Development of new scintillators for medical applications. Nucl. Instrum. Methods Phys. Res. A, 809, 130-139(2016).

    [8] L. Borgese, F. Bilo, R. Dalipi. Total reflection X-ray fluorescence as a tool for food screening. Spectrochim. Acta B, 113, 1-15(2015).

    [9] F. Maddalena, L. Tjahjana, A. Xie. Inorganic, organic, and perovskite halides with nanotechnology for high-light yield X- and γ-ray scintillators. Crystals, 9, 88(2019).

    [10] K. Naresh, K. A. Khan, R. Umer. The use of X-ray computed tomography for design and process modeling of aerospace composites: a review. Mater. Des., 190, 108553(2020).

    [11] J. A. Rowlands. Material change for X-ray detectors. Nature, 550, 47-48(2017).

    [12] H. Wei, J. Huang. Halide lead perovskites for ionizing radiation detection. Nat. Commun., 10, 1066(2019).

    [13] T. Chen, X. Li, Y. Wang. Centimeter-sized Cs3Cu2I5 single crystals grown by oleic acid assisted inverse temperature crystallization strategy and their films for high-quality X-ray imaging. J. Energy Chem., 79, 382-389(2023).

    [14] J. H. Heo, D. H. Shin, J. K. Park. High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging. Adv. Mater., 30, 1801743(2018).

    [15] W. Mengesha, T. D. Taulbee, B. D. Rooney. Light yield nonproportionality of CsI (Tl), CsI (Na), and YAP. IEEE Trans. Nucl. Sci., 45, 456-461(1998).

    [16] I. Mouhti, A. Elanique, M. Y. Messous. Characterization of CsI (Tl) and LYSO (Ce) scintillator detectors by measurements and Monte Carlo simulations. Appl. Radiat. Isot., 154, 108878(2019).

    [17] A. Kryemadhi, L. Barner, A. Grove. A LYSO crystal array readout by silicon photomultipliers as compact detector for space applications. Nucl. Instrum. Methods Phys. Res. A, 912, 93-96(2018).

    [18] S. Weber, D. Christ, M. Kurzeja. Comparison of LuYAP, LSO, and BGO as scintillators for high resolution PET detectors. IEEE Trans. Nucl. Sci., 50, 1370-1372(2003).

    [19] E. V. D. van Loef, P. Dorenbos, C. W. E. van Eijk. High-energy-resolution scintillator: Ce3+ activated LaBr3. Appl. Phys. Lett., 79, 1573-1575(2001).

    [20] C. W. E. van Eijk. Inorganic scintillators in medical imaging. Phys. Med. Biol., 47, R85-R106(2002).

    [21] O. Moseley, T. Doherty, R. Parmee. Halide perovskites scintillators: unique promise and current limitations. J. Mater. Chem. C, 9, 11588-11604(2021).

    [22] A. Y. Martin Nikl. Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection. Adv. Opt. Mater., 3, 463-481(2015).

    [23] Y. Zhang, R. Sun, X. Ou. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens. ACS Nano, 13, 2520-2525(2019).

    [24] Y. Cao, J. Wei, C. Li. Optimal operating control strategy for biogas generation under electricity spot market. J. Eng., 2019, 5183-5186(2019).

    [25] Y. Li, P. Vashishtha, Z. Zhou. Room temperature synthesis of stable, printable Cs3Cu2X5 (X = I, Br/I, Br, Br/Cl, Cl) colloidal nanocrystals with near-unity quantum yield green emitters (X = Cl). Chem. Mater., 32, 5515-5524(2020).

    [26] Q. Chen, J. Wu, X. Ou. All-inorganic perovskite nanocrystal scintillators. Nature, 561, 88-93(2018).

    [27] B. Yang, L. Yin, G. Niu. Lead-free halide Rb2CuBr3 as sensitive X-ray scintillator. Adv. Mater., 31, 1904711(2019).

    [28] S. Seth, T. Ahmed, A. De. Tackling the defects, stability, and photoluminescence of CsPbX3 perovskite nanocrystals. ACS Energy Lett., 4, 1610-1618(2019).

    [29] Q. Zhou, J. Ren, J. Xiao. Highly efficient copper halide scintillators for high-performance and dynamic X-ray imaging. Nanoscale, 13, 19894-19902(2021).

    [30] W. Gao, G. Niu, L. Yin. One-dimensional all-inorganic K2CuBr3 with violet emission as efficient X-ray scintillators. ACS Appl. Electron. Mater., 2, 2242-2249(2020).

    [31] Y. Zhou, X. Wang, T. He. Large-area perovskite-related copper halide film for high-resolution flexible X-ray imaging scintillation screens. ACS Energy Lett., 7, 844-846(2022).

    [32] T. Jiang, W. Ma, H. Zhang. Highly efficient and tunable emission of lead-free manganese halides toward white light-emitting diode and X-ray scintillation applications. Adv. Funct. Mater., 31, 2009973(2021).

    [33] T. Jun, T. Handa, K. Sim. One-step solution synthesis of white-light-emitting films via dimensionality control of the Cs-Cu-I system. Appl. Mater., 7, 111113(2019).

    [34] P. Cheng, L. Sun, L. Feng. Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals. Angew. Chem. Int. Ed., 58, 16087-16091(2019).

    [35] Y. Li, Z. Shi, W. Liang. Highly stable and spectrum-selective ultraviolet photodetectors based on lead-free copper-based perovskites. Mater. Horiz., 7, 530-540(2020).

    [36] W. Liang, L. Wang, Y. Li. Stable and ultraviolet-enhanced broadband photodetectors based on Si nanowire arrays-Cs3Cu2I5 nanocrystals hybrid structures. Mater. Today Phys., 18, 100398(2021).

    [37] S. Cheng, A. Beitlerova, R. Kucerkova. Zero-dimensional Cs3Cu2I5 perovskite single crystal as sensitive X-ray and γ-ray scintillator. Phys. Status Solidi-RRL, 14, 2000374(2020).

    [38] N. Li, Z. Xu, Y. Xiao. Flexible, high scintillation yield Cs3Cu2I5 film made of ball-milled powder for high spatial resolution X-ray imaging. Adv. Opt. Mater., 10, 2102232(2022).

    [39] Z. Guo, J. Li, R. Pan. All-inorganic copper(I)-based ternary metal halides: promising materials toward optoelectronics. Nanoscale, 12, 15560-15576(2020).

    [40] D. Yuan. Air-stable bulk halide single-crystal scintillator Cs3Cu2I5 by melt growth: intrinsic and Tl doped with high light yield. ACS Appl. Mater. Interfaces, 12, 38333-38340(2020).

    [41] X. Li, J. Chen, D. Yang. Mn2+ induced significant improvement and robust stability of radioluminescence in Cs3Cu2I5 for high-performance nuclear battery. Nat. Commun., 12, 3879(2021).

    [42] K. Qu, Y. Lu, P. Ran. Zn (II)-doped cesium copper halide nanocrystals with high quantum yield and colloidal stability for high-resolution X-ray imaging. Adv. Opt. Mater., 11, 2202883(2023).

    [43] Q. Wang, Q. Zhou, M. Nikl. Highly resolved X-ray imaging enabled by In(I) doped perovskite-like Cs3Cu2I5 single crystal scintillator. Adv. Opt. Mater., 10, 2200304(2022).

    [44] X. Hu, P. Yan, P. Ran. In situ fabrication of Cs3Cu2I5: Tl nanocrystal films for high-resolution and ultrastable X-ray imaging. J. Phys. Chem. Lett., 13, 2862-2870(2022).

    [45] T. Jun, K. Sim, S. Iimura. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Adv. Mater., 30, 1804547(2018).

    [46] H. Peng, Y. Tian, Z. Zhang. Bulk assembly of zero-dimensional organic copper bromide hybrid with bright self-trapped exciton emission and high antiwater stability. J. Phys. Chem. C, 125, 20014-20021(2021).

    [47] T. Hu, M. D. Smith, E. R. Dohner. Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites. J. Phys. Chem. Lett., 7, 2258-2263(2016).

    [48] T. He, Y. Zhou, X. Wang. High-performance copper-doped perovskite-related silver halide X-ray imaging scintillator. ACS Energy Lett., 7, 2753-2760(2022).

    [49] F. Zhang, Y. Zhou, Z. Chen. Thermally activated delayed fluorescence zirconium-based perovskites for large-area and ultraflexible X-ray scintillator screens. Adv. Mater., 34, 2204801(2022).

    [50] Z. Li, F. Zhou, H. Yao. Halide perovskites for high-performance X-ray detector. Mater. Today, 48, 155-175(2021).

    [51] Y. Haruta, M. Kawakami, Y. Nakano. Scalable fabrication of metal halide perovskites for direct X-ray flat-panel detectors: a perspective. Chem. Mater., 34, 5323-5333(2022).

    [52] H. Wu, Y. Ge, G. Niu. Metal halide perovskites for X-ray detection and imaging. Matter, 4, 144-163(2021).

    [53] R. Duan, Z. Chen, D. Xiang. Large-area flexible scintillator screen based on copper-based halides for sensitive and stable X-ray imaging. J. Lumin., 253, 119482(2023).

    [54] X. Zhao, T. Jin, W. Gao. Embedding Cs3Cu2I5 scintillators into anodic aluminum oxide matrix for high-resolution X-ray imaging. Adv. Opt. Mater., 9, 2101194(2021).

    [55] Q. Xu, S. Zhou, J. Huang. Ultra-flexible and highly sensitive scintillation screen based on perovskite quantum dots for non-flat objects X-ray imaging. Mater. Today Phys., 18, 100390(2021).

    [56] K. Han, K. Sakhatskyi, J. Jin. Seed-crystal-induced cold sintering toward metal halide transparent ceramic scintillators. Adv. Mater., 34, 2110420(2022).

    [57] M. Zhang, J. Zhu, B. Yang. Oriented-structured CsCu2I3 film by close-space sublimation and nanoscale seed screening for high-resolution X-ray imaging. Nano Lett., 21, 1392-1399(2021).

    [58] W. Zhu, W. Ma, Y. Su. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators. Light Sci. Appl., 9, 112(2020).

    [59] N. Zhang, R. Zhang, X. Xu. X-ray-activated long afterglow double-perovskite scintillator for detection and extension imaging. Adv. Opt. Mater., 11, 2300187(2023).

    Rui Liu, Zhiyong Liu, Chengxu Lin, Guangda Niu, Xuning Zhang, Bo Sun, Tielin Shi, Guanglan Liao. Indium-doped perovskite-related cesium copper halide scintillator films for high-performance X-ray imaging[J]. Photonics Research, 2024, 12(2): 369
    Download Citation