• Photonics Research
  • Vol. 9, Issue 5, 803 (2021)
Junli Qi1、2、3、4, Weihua Wang1、2、5、6、*, Bo Shi4, Hui Zhang4, Yanan Shen4, Haifei Deng4, Wenjing Pu4, Xin Liu4, Huihui Shan4, Xiaomin Ma4, Lianqiang Zhang4, Wei Lu5, Meicheng Fu3, and Xiujian Li3、7、*
Author Affiliations
  • 1Institute of Plasma Physics, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China
  • 2Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230031, China
  • 3College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China
  • 4Institute of Applied Physics, Army Academy of Artillery and Air Defense, Hefei 230031, China
  • 5Institute of Physical Science and Information Technology, Anhui University, Hefei 230031, China
  • 6e-mail: whwang@ipp.ac.cn
  • 7e-mail: xjli@nudt.edu.cn
  • show less
    DOI: 10.1364/PRJ.419561 Cite this Article Set citation alerts
    Junli Qi, Weihua Wang, Bo Shi, Hui Zhang, Yanan Shen, Haifei Deng, Wenjing Pu, Xin Liu, Huihui Shan, Xiaomin Ma, Lianqiang Zhang, Wei Lu, Meicheng Fu, Xiujian Li. Concise and efficient direct-view generation of arbitrary cylindrical vector beams by a vortex half-wave plate[J]. Photonics Research, 2021, 9(5): 803 Copy Citation Text show less
    References

    [1] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon., 1, 1-57(2009).

    [2] U. Levy, Y. Silberberg, N. Davidson. Mathematics of vectorial Gaussian beams. Adv. Opt. Photon., 11, 828-891(2019).

    [3] K. S. Youngworth, T. G. Brown. Focusing of high numerical aperture cylindrical-vector beams. Opt. Express, 7, 77-87(2000).

    [4] R. Dorn, S. Quabis, G. Leuchs. Sharper focus for a radially polarized light beam. Phys. Rev. Lett., 91, 233901(2003).

    [5] C. Ping, C. Liang, F. Wang, Y. Cai. Radially polarized multi-Gaussian Schell-model beam and its tight focusing properties. Opt. Express, 25, 32475-32490(2017).

    [6] W. Chen, Q. Zhan. Three-dimensional focus shaping with cylindrical vector beams. Opt. Commun., 265, 411-417(2006).

    [7] E. Otte, K. Tekce, C. Denz. Tailored intensity landscapes by tight focusing of singular vector beams. Opt. Express, 25, 20194-20201(2017).

    [8] H.-F. Xu, Y. Zhou, H.-W. Wu, H.-J. Chen, Z.-Q. Sheng, J. Qu. Focus shaping of the radially polarized Laguerre-Gaussian-correlated Schell-model vortex beams. Opt. Express, 26, 20076-20088(2018).

    [9] H.-F. Xu, R. Zhang, Z.-Q. Sheng, J. Qu. Focus shaping of partially coherent radially polarized vortex beam with tunable topological charge. Opt. Express, 27, 23959-23969(2019).

    [10] C. Varin, M. Piché. Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams. Appl. Phys. B, 74, s83-s88(2002).

    [11] Q. Zhan. Trapping metallic Rayleigh particles with radial polarization. Opt. Express, 12, 3377-3382(2004).

    [12] Y. Kozawa, S. Sato. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams. Opt. Express, 18, 10828-10833(2010).

    [13] B. J. Roxworthy, K. C. Toussaint. Optical trapping with π-phase cylindrical vector beams. New J. Phys., 12, 073012(2010).

    [14] O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari. Optical trapping and manipulation of nanostructures. Nat. Nanotechnol., 8, 807-819(2013).

    [15] V. G. Niziev, A. V. Nesterov. Influence of beam polarization on laser cutting efficiency. J. Phys. D, 32, 1455-1461(1999).

    [16] M. Meier, V. Romano, T. Feurer. Material processing with pulsed radially and azimuthally polarized laser radiation. Appl. Phys. A, 86, 329-334(2007).

    [17] M.-Q. Cai, P.-P. Li, D. Feng, Y. Pan, S.-X. Qian, Y. Li, C. Tu, H.-T. Wang. Microstructures fabricated by dynamically controlled femtosecond patterned vector optical fields. Opt. Lett., 41, 1474-1477(2016).

    [18] P. Török, P. Munro. The use of Gauss-Laguerre vector beams in STED microscopy. Opt. Express, 12, 3605-3617(2004).

    [19] S. Segawa, Y. Kozawa, S. Sato. Resolution enhancement of confocal microscopy by subtraction method with vector beams. Opt. Lett., 39, 3118-3121(2014).

    [20] Y. Kozawa, S. Sato. Numerical analysis of resolution enhancement in laser scanning microscopy using a radially polarized beam. Opt. Express, 23, 2076-2084(2015).

    [21] S. Berg-Johansen, F. Töppel, B. Stiller, P. Banzer, M. Ornigotti, E. Giacobino, G. Leuchs, A. Aiello, C. Marquardt. Classically entangled optical beams for high-speed kinematic sensing. Optica, 2, 864-868(2015).

    [22] S. Roy, K. Ushakova, Q. van den Berg, S. F. Pereira, H. P. Urbach. Radially polarized light for detection and nanolocalization of dielectric particles on a planar substrate. Phys. Rev. Lett., 114, 103903(2015).

    [23] M. Neugebauer, P. Woźniak, A. Bag, G. Leuchs, P. Banzer. Polarization-controlled directional scattering for nanoscopic position sensing. Nat. Commun., 7, 11286(2016).

    [24] G. Milione, T. A. Nguyen, J. Leach, D. A. Nolan, R. R. Alfano. Using the nonseparability of vector beams to encode information for optical communication. Opt. Lett., 40, 4887-4890(2015).

    [25] G. Milione, M. P. J. Lavery, H. Huang, Y. Ren, G. Xie, T. A. Nguyen, E. Karimi, L. Marrucci, D. A. Nolan, R. R. Alfano, A. E. Willner. 4 × 20  gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer. Opt. Lett., 40, 1980-1983(2015).

    [26] Y. Zhao, J. Wang. High-base vector beam encoding/decoding for visible-light communications. Opt. Lett., 40, 4843-4846(2015).

    [27] X.-L. Wang, X.-D. Cai, Z.-E. Su, M.-C. Chen, D. Wu, L. Li, N.-L. Liu, C.-Y. Lu, J.-W. Pan. Quantum teleportation of multiple degrees of freedom of a single photon. Nature, 518, 516-519(2015).

    [28] P. Li, B. Wang, X. Zhang. High-dimensional encoding based on classical nonseparability. Opt. Express, 24, 15143-15159(2016).

    [29] A. Sit, F. Bouchard, R. Fickler, J. Gagnon-Bischoff, H. Larocque, K. Heshami, D. Elser, C. Peuntinger, K. Günthner, B. Heim, C. Marquardt, G. Leuchs, R. W. Boyd, E. Karimi. High-dimensional intracity quantum cryptography with structured photons. Optica, 4, 1006-1010(2017).

    [30] J. Zhu, Y. Chen, Y. Zhang, X. Cai, S. Yu. Spin and orbital angular momentum and their conversion in cylindrical vector vortices. Opt. Lett., 39, 4435-4438(2014).

    [31] S. Fu, C. Guo, G. Liu, Y. Li, H. Yin, Z. Li, Z. Chen. Spin-orbit optical Hall effect. Phys. Rev. Lett., 123, 243904(2019).

    [32] P. Shi, L. Du, X. Yuan. Structured spin angular momentum in highly focused cylindrical vector vortex beams for optical manipulation. Opt. Express, 26, 23449-23459(2018).

    [33] Y. Han, L. Chen, Y.-G. Liu, Z. Wang, H. Zhang, K. Yang, K. C. Chou. Orbital angular momentum transition of light using a cylindrical vector beam. Opt. Lett., 43, 2146-2149(2018).

    [34] M. Li, Y. Cai, S. Yan, Y. Liang, P. Zhang, B. Yao. Orbit-induced localized spin angular momentum in strong focusing of optical vectorial vortex beams. Phys. Rev. A, 97, 053842(2018).

    [35] S. N. Khonina, A. V. Ustinov, S. A. Degtyarev. Inverse energy flux of focused radially polarized optical beams. Phys. Rev. A, 98, 043823(2018).

    [36] S. Degtyarev, D. Savelyev, S. Khonina, N. Kazanskiy. Metasurfaces with continuous ridges for inverse energy flux generation. Opt. Express, 27, 15129-15135(2019).

    [37] A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, U. Levy. Near- and far-field properties of plasmonic oligomers under radially and azimuthally polarized light excitation. ACS Nano, 8, 4969-4974(2014).

    [38] S. A. Syubaev, A. Y. Zhizhchenko, D. V. Pavlov, S. O. Gurbatov, E. V. Pustovalov, A. P. Porfirev, S. N. Khonina, S. A. Kulinich, J. B. B. Rayappan, S. I. Kudryashov, A. A. Kuchmizhak. Plasmonic nanolenses produced by cylindrical vector beam printing for sensing applications. Sci. Rep., 9, 19750(2019).

    [39] S. A. Schulz, T. Machula, E. Karimi, R. W. Boyd. Integrated multi vector vortex beam generator. Opt. Express, 21, 16130-16141(2013).

    [40] X. Ma, S. Zheng, Q. Chen, S. Tan, P. Zhang, Q. Lu, J. Wang, W. Guo. High-speed directly modulated cylindrical vector beam lasers. ACS Photon., 6, 3261-3270(2019).

    [41] L. Feng, Y. Li, S. Wu, X. Guan, C. Yang, W. Tong, W. Li, J. Qiu, X. Hong, Y. Zuo, H. Guo, E. Chen, J. Wu. All-fiber generation of arbitrary cylindrical vector beams on the first-order Poincaré sphere. Photon. Res., 8, 1268-1277(2020).

    [42] Y. Sebbag, U. Levy. Arbitrarily directed emission of integrated cylindrical vector vortex beams by geometric phase engineering. Opt. Lett., 45, 6779-6782(2020).

    [43] K. Yonezawa, Y. Kozawa, S. Sato. Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal. Opt. Lett., 31, 2151-2153(2006).

    [44] G. Machavariani, Y. Lumer, I. Moshe, A. Meir, S. Jackel, N. Davidson. Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes. Appl. Opt., 46, 3304-3310(2007).

    [45] K. Yonezawa, Y. Kozawa, S. Sato. Compact laser with radial polarization using birefringent laser medium. Jpn. J. Appl. Phys., 46, 5160-5163(2007).

    [46] J. F. Bisson, J. Li, K. Ueda, Y. Senatsky. Radially polarized ring and arc beams of a neodymium laser with an intra-cavity axicon. Opt. Express, 14, 3304-3311(2006).

    [47] Y. Kozawa, S. Sato. Generation of a radially polarized laser beam by use of a conical Brewster prism. Opt. Lett., 30, 3063-3065(2005).

    [48] S. Vyas, Y. Kozawa, S. Sato. Generation of radially polarized Bessel–Gaussian beams from c-cut Nd:YVO4 laser. Opt. Lett., 39, 1101-1104(2014).

    [49] D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, A. Forbes. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photonics, 10, 327-332(2016).

    [50] G. Machavariani, Y. Lumer, I. Moshe, A. Meir, S. Jackel. Efficient extracavity generation of radially and azimuthally polarized beams. Opt. Lett., 32, 1468-1470(2007).

    [51] W. J. Lai, B. C. Lim, P. B. Phua, K. S. Tiaw, H. H. Teo, M. H. Hong. Generation of radially polarized beam with a segmented spiral varying retarder. Opt. Express, 16, 15694-15699(2008).

    [52] J. Qi, H. Zhang, B. Pan, H. Deng, J. Yang, B. Shi, H. Wang, A. Du, W. Wang, X. Li. A succinct method to generate multi-type HCV beams with a spatial spiral varying retardation-plate. Europhys. Lett., 121, 54004(2018).

    [53] K. J. Moh, X.-C. Yuan, J. Bu, D. K. Y. Low, R. E. Burge. Direct noninterference cylindrical vector beam generation applied in the femtosecond regime. Appl. Phys. Lett., 89, 251114(2006).

    [54] S. N. Khonina, A. V. Ustinov, S. A. Fomchenkov, A. P. Porfirev. Formation of hybrid higher-order cylindrical vector beams using binary multi-sector phase plates. Sci. Rep., 8, 14320(2018).

    [55] C. Loussert, E. Brasselet. Efficient scalar and vectorial singular beam shaping using homogeneous anisotropic media. Opt. Lett., 35, 7-9(2010).

    [56] T. Fadeyeva, V. Shvedov, N. Shostka, C. Alexeyev, A. Volyar. Natural shaping of the cylindrically polarized beams. Opt. Lett., 35, 3787-3789(2010).

    [57] S. N. Khonina, S. V. Karpeev, V. D. Paranin, A. A. Morozov. Polarization conversion under focusing of vortex laser beams along the axis of anisotropic crystals. Phys. Lett. A, 381, 2444-2455(2017).

    [58] S. N. Khonina, A. P. Porfirev, N. L. Kazanskiy. Variable transformation of singular cylindrical vector beams using anisotropic crystals. Sci. Rep., 10, 5590(2020).

    [59] S. N. Khonina, S. V. Karpeev. Generating inhomogeneously polarized higher-order laser beams by use of diffractive optical elements. J. Opt. Soc. Am. A, 28, 2115-2123(2011).

    [60] S. N. Khonina, S. V. Karpeev, A. P. Porfirev. Sector sandwich structure: an easy-to-manufacture way towards complex vector beam generation. Opt. Express, 28, 27628-27643(2020).

    [61] Z. Bomzon, G. Biener, V. Kleiner, E. Hasman. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings. Opt. Lett., 27, 285-287(2002).

    [62] G. M. Lerman, U. Levy. Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm. Opt. Lett., 33, 2782-2784(2008).

    [63] C. Zhu, Q. Jiao, X. Tan, W. Wang, . Design of a subwavelength all-metal grating for generating azimuthally polarized beams based on modified particle swarm optimization. Appl. Opt., 58, 4052-4058(2019).

    [64] P. Yu, S. Chen, J. Li, H. Cheng, Z. Li, W. Liu, B. Xie, Z. Liu, J. Tian. Generation of vector beams with arbitrary spatial variation of phase and linear polarization using plasmonic metasurfaces. Opt. Lett., 40, 3229-3232(2015).

    [65] F. Yue, D. Wen, J. Xin, B. D. Gerardot, J. Li, X. Chen. Vector vortex beam generation with a single plasmonic metasurface. ACS Photon., 3, 1558-1563(2016).

    [66] Y. Liu, X. Ling, X. Yi, X. Zhou, H. Luo, S. Wen. Realization of polarization evolution on higher-order Poincaré sphere with metasurface. Appl. Phys. Lett., 104, 191110(2014).

    [67] W. Shu, Y. Liu, Y. Ke, X. Ling, Z. Liu, B. Huang, H. Luo, X. Yin. Propagation model for vector beams generated by metasurfaces. Opt. Express, 24, 21177-21189(2016).

    [68] V. G. Niziev, R. S. Chang, A. V. Nesterov. Generation of inhomogeneously polarized laser beams by use of a Sagnac interferometer. Appl. Opt., 45, 8393-8399(2006).

    [69] S. Liu, P. Li, T. Peng, J. Zhao. Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer. Opt. Express, 20, 21715-21721(2012).

    [70] P. Li, Y. Zhang, S. Liu, C. Ma, L. Han, H. Cheng, J. Zhao. Generation of perfect vectorial vortex beams. Opt. Lett., 41, 2205-2208(2016).

    [71] J. Jia, Z. Chang, H. Yang, Q. Liu, F. Wang, H. Gao, F. Li, P. Zhang. Mode sorter designed for (de)multiplexing vector vortex modes. Appl. Opt., 58, 7094-7099(2019).

    [72] X. Xu, Y. Zhou, Y.-S. Yuan, J. Wang, H.-F. Xu, J. Qu. Generation of cylindrical and elliptical symmetrical vector beam on the Mach–Zehnder interferometer. AIP Adv., 8, 125007(2018).

    [73] C. Chen, Y. Zhang, L. Ma, Y. Zhang, Z. Li, R. Zhang, X. Zeng, Z. Zhan, C. He, X. Ren, C. Cheng, C. Liu. Flexible generation of higher-order Poincaré beams with high efficiency by manipulating the two eigenstates of polarized optical vortices. Opt. Express, 28, 10618-10632(2020).

    [74] S. C. Tidwell, D. H. Ford, W. D. Kimura. Generating radially polarized beams interferometrically. Appl. Opt., 29, 2234-2239(1990).

    [75] N. Passilly, R. de Saint Denis, K. Aït-Ameur, F. Treussart, R. Hierle, J.-F. Roch. Simple interferometric technique for generation of a radially polarized light beam. J. Opt. Soc. Am. A, 22, 984-991(2005).

    [76] X.-L. Wang, J. Ding, W.-J. Ni, C.-S. Guo, H.-T. Wang. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement. Opt. Lett., 32, 3549-3551(2007).

    [77] Z. Chen, T. Zeng, B. Qian, J. Ding. Complete shaping of optical vector beams. Opt. Express, 23, 17701-17710(2015).

    [78] J. Mendoza-Hernández, M. F. Ferrer-Garcia, J. A. Rojas-Santana, D. Lopez-Mago. Cylindrical vector beam generator using a two-element interferometer. Opt. Express, 27, 31810-31819(2019).

    [79] W. Han, Y. Yang, W. Cheng, Q. Zhan. Vectorial optical field generator for the creation of arbitrarily complex fields. Opt. Express, 21, 20692-20706(2013).

    [80] S. Fu, C. Gao, T. Wang, S. Zhang, Y. Zhai. Simultaneous generation of multiple perfect polarization vortices with selective spatial states in various diffraction orders. Opt. Lett., 41, 5454-5457(2016).

    [81] S. Fu, T. Wang, C. Gao. Generating perfect polarization vortices through encoding liquid-crystal display devices. Appl. Opt., 55, 6501-6505(2016).

    [82] S. Fu, C. Gao, T. Wang, Y. Zhai, C. Yin. Anisotropic polarization modulation for the production of arbitrary Poincaré beams. J. Opt. Soc. Am. B, 35, 1-7(2018).

    [83] M. Bashkansky, D. Park, F. K. Fatemi. Azimuthally and radially polarized light with a nematic SLM. Opt. Express, 18, 212-217(2010).

    [84] J. Qi, W. Sun, J. Liao, Y. Nie, X. Wang, J. Zhang, X. Liu, H. Jia, M. Lu, S. Chen, J. Liu, J. Yang, J. Tan, X. Li. Generation and analysis of both in-phase and out-phase radially polarized femtosecond-pulse beam. Opt. Eng., 45, 024201(2013).

    [85] Y. Zhang, P. Li, C. Ma, S. Liu, H. Cheng, L. Han, J. Zhao. Efficient generation of vector beams by calibrating the phase response of a spatial light modulator. Appl. Opt., 56, 4956-4960(2017).

    [86] S. Liu, S. Qi, Y. Zhang, P. Li, D. Wu, L. Han, J. Zhao. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude. Photon. Res., 6, 228-233(2018).

    [87] Y. Zhou, X. Li, Y. Cai, Y. Zhang, S. Yan, M. Zhou, M. Li, B. Yao. Compact optical module to generate arbitrary vector vortex beams. Appl. Opt., 59, 8932-8938(2020).

    [88] S. N. Khonina, A. V. Ustinov, A. P. Porfirev. Vector Lissajous laser beams. Opt. Lett., 45, 4112-4115(2020).

    [89] M. Rashid, O. M. Maragò, P. H. Jones. Focusing of high order cylindrical vector beams. J. Opt. A, 11, 065204(2009).

    [90] S. N. Khonina. Vortex beams with high-order cylindrical polarization: features of focal distributions. Appl. Phys. B, 125, 100(2019).

    [91] L. Marrucci, C. Manzo, D. Paparo. Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: switchable helical mode generation. Appl. Phys. Lett., 88, 221102(2006).

    [92] E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, E. Santamato. Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates. Appl. Phys. Lett., 94, 231124(2009).

    [93] S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, E. Santamato. Tunable liquid crystal q-plates with arbitrary topological charge. Opt. Express, 19, 4085-4090(2011).

    [94] A. Rubano, F. Cardano, B. Piccirillo, L. Marrucci. Q-plate technology: a progress review [Invited]. J. Opt. Soc. Am. B, 36, D70-D87(2019).

    [95] M. Beresna, M. Gecevicius, P. G. Kazansky, T. Gertus. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl. Phys. Lett., 98, 201101(2011).

    [96] M. Beresna, M. Gecevičius, P. G. Kazansky. Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass [Invited]. Opt. Mater. Express, 1, 783-795(2011).

    [97] D. Wu, Y. Li, W. Jia, J. Zhou, Y. Zhao, Y. Fu, J. Wang. Generation of arbitrary vector vortex beams based on the dual-modulation method. Appl. Opt., 58, 1508-1513(2019).

    [98] L. Marrucci, C. Manzo, D. Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett., 96, 163905(2006).

    [99] W. Shu, X. Ling, X. Fu, Y. Liu, Y. Ke, H. Luo. Polarization evolution of vector beams generated by q-plates. Photon. Res., 5, 64-72(2017).

    Junli Qi, Weihua Wang, Bo Shi, Hui Zhang, Yanan Shen, Haifei Deng, Wenjing Pu, Xin Liu, Huihui Shan, Xiaomin Ma, Lianqiang Zhang, Wei Lu, Meicheng Fu, Xiujian Li. Concise and efficient direct-view generation of arbitrary cylindrical vector beams by a vortex half-wave plate[J]. Photonics Research, 2021, 9(5): 803
    Download Citation