• Advanced Photonics
  • Vol. 5, Issue 1, 016004 (2023)
George Giamougiannis1、*, Apostolos Tsakyridis1, Miltiadis Moralis-Pegios1, George Mourgias-Alexandris1, Angelina R. Totovic1, George Dabos1, Manos Kirtas1, Nikolaos Passalis1, Anastasios Tefas1, Dimitrios Kalavrouziotis2, Dimitris Syrivelis2, Paraskevas Bakopoulos2, Elad Mentovich3, David Lazovsky4, and Nikos Pleros1
Author Affiliations
  • 1Aristotle University of Thessaloniki, Department of Informatics, Thessaloniki, Greece
  • 2NVIDIA, Athens, Greece
  • 3NVIDIA, Yokneam, Israel
  • 4Celestial AI, Santa Clara, California, United States
  • show less
    DOI: 10.1117/1.AP.5.1.016004 Cite this Article Set citation alerts
    George Giamougiannis, Apostolos Tsakyridis, Miltiadis Moralis-Pegios, George Mourgias-Alexandris, Angelina R. Totovic, George Dabos, Manos Kirtas, Nikolaos Passalis, Anastasios Tefas, Dimitrios Kalavrouziotis, Dimitris Syrivelis, Paraskevas Bakopoulos, Elad Mentovich, David Lazovsky, Nikos Pleros. Neuromorphic silicon photonics with 50 GHz tiled matrix multiplication for deep-learning applications[J]. Advanced Photonics, 2023, 5(1): 016004 Copy Citation Text show less
    References

    [1] Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521, 436-444(2015).

    [2] P. R. Prucnal et al. Multiwavelength neuromorphic photonics(2019).

    [3] Z. Chen et al. A fast deep learning system using GPU. IEEE Int. Symp. Circuits and Syst. (ISCAS), 1552-1555(2014).

    [4] C. Zhang et al. Optimizing FPGA-based accelerator design for deep convolutional neural networks, 161-170(2015).

    [5] Cloud Tensor Processing Units (TPUs)(2023).

    [6] L. Cavigelli, L. Benini. Origami: a 803-GOp/s/W convolutional network accelerator. IEEE Trans. Circuits Syst. Video Technol., 27, 2461-2475(2017).

    [7] Graphcore(2023).

    [8] Groq(2023).

    [9] Y. Chen et al. A survey of accelerator architectures for deep neural networks. Engineering, 6, 264-274(2020).

    [10] T. N. Theis, H.-S. P. Wong. The end of Moore’s law: a new beginning for information technology. Comput. Sci. Eng., 19, 41-50(2017).

    [11] L. X. Hu et al. All-optically controlled memristor for optoelectronic neuromorphic computing. Adv. Funct. Mater., 31, 2005582(2021).

    [12] J. Yanh et al. Optically driven intelligent computing with ZnO memristor. Fundam. Res.(2022).

    [13] F. Brückerhoff-Plückelmann et al. A large scale photonic matrix processor enabled by charge accumulation. Nanophotonics(2022).

    [14] X. Li et al. On-chip phase change optical matrix multiplication core. IEEE Int. Electron Devices Meeting (IEDM), 7.5.1-7.5.4(2020).

    [15] K. Portner et al. Analog nanoscale electro-optical synapses for neuromorphic computing applications. ACS Nano, 15, 14776-14785(2021).

    [16] V. J. Sorger et al. Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics, 1, 17-22(2012).

    [17] Y. Shen et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).

    [18] J. Grollier et al. Neuromorphic spintronics. Nat. Electron., 3, 360-370(2020).

    [19] Z. Guo et al. Spintronics for energy-efficient computing: an overview and outlook. Proc. IEEE, 109, 1398-1417(2021).

    [20] M. A. Nahmias et al. Photonic multiply-accumulate operations for neural networks. IEEE J. Sel. Top. Quantum Electron., 26, 7701518(2020).

    [21] A. Totovic et al. Femtojoule per MAC neuromorphic photonics: an energy and technology roadmap. IEEE J. Sel. Top. Quantum Electron., 26, 8800115(2020).

    [22] J. Feldmann et al. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52-58(2021).

    [23] G. Giamougiannis et al. Silicon-integrated coherent neurons with 32GMAC/sec/axon compute line-rates using EAM-based input and weighting cells(2021).

    [24] S. Ohno et al. Si microring resonator crossbar array for on-chip inference and training of optical neural network(2021).

    [25] C. Huang et al. Demonstration of scalable microring weight bank control for large-scale photonic integrated circuits. APL Photonics, 5, 040803(2020).

    [26] G. Mourgias-Alexandris et al. A silicon photonic coherent neuron with 10GMAC/sec processing line-rate, Tu5H.1(2021).

    [27] B. Shi, N. Calabretta, R. Stabile. Deep neural network through an InP SOA-based photonic integrated cross-connect. IEEE J. Sel. Top. Quantum Electron., 26, 7701111(2020).

    [28] H. Zhang et al. An optical neural chip for implementing complex-valued neural network. Nat. Commun., 12, 457(2021).

    [29] W. Zhang et al. Microring weight banks control beyond 8.5-bits accuracy(2021).

    [30] J. K. George. Neuromorphic photonics with electro-absorption modulators. Opt. Express, 27, 5181-5191(2019).

    [31] C. Wu et al. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat. Commun., 12, 96(2021).

    [32] G. Dabos et al. Neuromorphic photonic technologies and architectures: scaling opportunities and performance frontiers [Invited]. Opt. Mater. Express, 12, 2343-2367(2022).

    [33] G. Mourgias-Alexandris et al. An all-optical neuron with sigmoid activation function. Opt. Express, 27, 9620-9630(2019).

    [34] C. Huang et al. Programmable silicon photonic optical thresholder. IEEE Photonics Technol. Lett., 31, 1834-1837(2019).

    [35] R. Amin et al. ITO-based electro-absorption modulator for photonic neural activation function. APL Mater., 7, 081112(2019).

    [36] I. A. D. Williamson et al. Reprogrammable electro-optic nonlinear activation functions for optical neural networks. IEEE J. Sel. Top. Quantum Electron., 26, 7700412(2019).

    [37] M. Moralis-Pegios et al. Neuromorphic silicon photonics and hardware-aware deep learning for high-speed inference. J. Lightwave Technol., 40, 3243-3254(2022).

    [38] G. Mourgias-Alexandris et al. Channel response-aware photonic neural network accelerators for high-speed inference through bandwidth-limited optics. Opt. Express, 30, 10664-10671(2022).

    [39] I. Kandel, M. Castelli. Transfer learning with convolutional neural networks for diabetic retinopathy image classification: a review. Appl. Sci., 10, 2021(2020).

    [40] G. E. Moon et al. Evaluating spatial accelerator architectures with tiled matrix-matrix multiplication. IEEE Trans. Parallel Distrib. Syst., 33, 1002-1014(2022).

    [41] NVIDIA app. Note(2023).

    [42] M. L. McHugh. Interrater reliability: the kappa statistic. Biochem. Med., 22, 276-282(2012).

    [43] G. Mourgias-Alexandris et al. Neuromorphic photonics with coherent linear neurons using dual-IQ modulation cells. J. Lightwave Technol., 38, 811-819(2020).

    [44] M. Pantouvaki et al. Active components for 50 Gb/s NRZ-OOK optical interconnects in a silicon photonics platform. J. Lightwave Technol., 35, 631-638(2017).

    [45] G. Sinatkas et al. Electro-optic modulation in integrated photonics. J. Appl. Phys., 130, 010901(2021).

    [46] H. Zhou et al. Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci. Appl., 11, 30(2022).

    [47] A. Totovic et al. WDM equipped universal linear optics for programmable neuromorphic photonic processors. Neuromorph. Comput. Eng., 2, 024010(2022).

    [48] G. Giamougiannis et al. A coherent photonic crossbar for scalable universal linear optics. J. Lightwave Technol.(2022).

    [49] A. Totovic et al. Programmable photonic neural networks combining WDM with coherent linear optics. Sci Rep., 12, 5605(2022).

    [50] A. Tsakyridis et al. Universal linear optics for ultra-fast neuromorphic silicon photonics towards Fj/MAC and TMAC/sec/mm2 engines. IEEE J. Sel. Top. Quantum Electron., 28, 8300815(2022).

    [51] G. Giamougiannis et al. Universal linear optics revisited: new perspectives for neuromorphic computing with silicon photonics. IEEE J. Sel. Top. Quantum Electron., 28, 6200116(2022).

    [52] J. Zhang et al. Deep learning based attack detection for cyber-physical system cybersecurity: a survey. IEEE/CAA J. Autom. Sin., 9, 377-391(2022).

    [53] M. Ge et al. Deep learning-based intrusion detection for IoT networks. IEEE 24th Pac. Rim Int. Symp. Depend. Comput. (PRDC), 256-25609(2019).

    [54] Z. Sheng et al. A compact and low-loss MMI coupler fabricated with CMOS technology. IEEE Photonics J., 4, 2272-2277(2012).

    [55] B. Sharma et al. Design and simulation of ultra-low loss triple tapered asymmetric directional coupler at 1330 nm. Microelectron. J., 107, 104957(2021).

    [56] Y. Ma et al. Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect. Opt. Express, 21, 29374-29382(2013).

    George Giamougiannis, Apostolos Tsakyridis, Miltiadis Moralis-Pegios, George Mourgias-Alexandris, Angelina R. Totovic, George Dabos, Manos Kirtas, Nikolaos Passalis, Anastasios Tefas, Dimitrios Kalavrouziotis, Dimitris Syrivelis, Paraskevas Bakopoulos, Elad Mentovich, David Lazovsky, Nikos Pleros. Neuromorphic silicon photonics with 50 GHz tiled matrix multiplication for deep-learning applications[J]. Advanced Photonics, 2023, 5(1): 016004
    Download Citation