• Laser & Optoelectronics Progress
  • Vol. 57, Issue 11, 111403 (2020)
Yuedong Li, Weiyi Yin, and Ye Dai*
Author Affiliations
  • Department of Physics, Shanghai University, Shanghai 200444, China
  • show less
    DOI: 10.3788/LOP57.111403 Cite this Article Set citation alerts
    Yuedong Li, Weiyi Yin, Ye Dai. Research Progress on Spatio-Temporal Coupling of Femtosecond Pulse Laser for Direct-Writing Nanograting[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111403 Copy Citation Text show less
    References

    [1] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2, 219-225(2008).

    [2] Sugioka K, Cheng Y. Femtosecond laser processing for optofluidic fabrication[J]. Lab on a Chip, 12, 3576-3589(2012).

    [3] Chen F. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining[J]. Laser & Photonics Reviews, 8, 251-275(2014).

    [4] Sugioka K, Cheng Y. Ultrafast lasers: reliable tools for advanced materials processing[J]. Light: Science & Applications, 3, e149(2014).

    [5] Liu K J, Li X H, Xie C X et al. Formation of sub-200 nm nanostructure on Fe film irradiated by femtosecond laser[J]. Optics & Laser Technology, 94, 28-33(2017).

    [6] Manzoli A, Filho J A et al. Femtosecond laser ablation of gold interdigitated electrodes for electronic tongues[J]. Optics & Laser Technology, 69, 148-153(2015).

    [7] Wu P C, Zhang C C, Yang L et al. Femtosecond laser dual-mode rapid fabrication based on spatial light modulator[J]. Chinese Journal of Lasers, 45, 1001005(2018).

    [8] Liu M N, Li M T, Sun H B. 3D femtosecond laser nanoprinting[J]. Laser & Optoelectronics Progress, 55, 011410(2018).

    [9] Zhang F T, Nie Z G, Qiu J R. Realization of optical modulation in germanium oxide glass by femtosecond laser direct writing[J]. Chinese Journal of Lasers, 45, 1202006(2018).

    [10] Qiao L L, Chu W, Wang Z et al. Three-dimensional microfabrication by shaped femtosecond laser pulses[J]. Acta Optica Sinica, 39, 0126012(2019).

    [11] Gong M, Dai Y, Song J et al. Influence of electron density distribution induced by single beam femtosecond laser on doubly-periodic nanogratings[J]. Acta Optica Sinica, 36, 0514001(2016).

    [12] Dai Y, Qiu J R. Research progress of single beam femtosecond laser direct writing self-organized nanogratings in fused silica[J]. Laser & Optoelectronics Progress, 50, 120002(2013).

    [13] Zhang F T, Cerkauskaite A, Drevinskas R et al. Microengineering of optical properties of GeO2 glass by ultrafast laser nanostructuring[J]. Advanced Optical Materials, 5, 1700342(2017).

    [14] Tan Y X, Wang Z H, Chu W et al. High-throughput in-volume processing in glass with isotropic spatial resolutions in three dimensions[J]. Optical Materials Express, 6, 3787-3793(2016).

    [15] Dai Y, Patel A, Song J et al. Void-nanograting transition by ultrashort laser pulse irradiation in silica glass[J]. Optics Express, 24, 19344-19353(2016).

    [16] Salter P S, Woolley M J, Morris S M et al. Femtosecond fiber Bragg grating fabrication with adaptive optics aberration compensation[J]. Optics Letters, 43, 5993-5996(2018).

    [17] Lu J F, Dai Y, Li Q et al. Fiber nanogratings induced by femtosecond pulse laser direct writing for in-line polarizer[J]. Nanoscale, 11, 908-914(2019).

    [18] He F, Cheng Y, Qiao L L et al. Two-photon fluorescence excitation with a microlens fabricated on the fused silica chip by femtosecond laser micromachining[J]. Applied Physics Letters, 96, 041108(2010).

    [19] Sun X Y, Cui D M, Hu Y W et al. Thermal process of silica glass microchannels fabricated by femtosecond laser ablation[J]. Chinese Optics Letters, 16, 101402(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJ181012000145lSoUrX

    [20] Zhang J Y. Gecevi ius M, Beresna M, et al. Seemingly unlimited lifetime data storage in nanostructured glass[J]. Physical Review Letters, 112, 033901(2014).

    [21] Davis K M, Miura K, Sugimoto N et al. Writing waveguides in glass with a femtosecond laser[J]. Optics Letters, 21, 1729-1731(1996).

    [22] Mishchik K, Cheng G, Huo G et al. Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica[J]. Optics Express, 18, 24809-24824(2010).

    [23] Glezer E N, Mazur E. Ultrafast-laser driven micro-explosions in transparent materials[J]. Applied Physics Letters, 71, 882-884(1997).

    [24] Smelser C W, Mihailov S J, Grobnic D. Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask[J]. Optics Express, 13, 5377-5386(2005).

    [25] Lu P, Grobnic D, Mihailov S J. Characterization of the birefringence in fiber Bragg gratings fabricated with an ultrafast-infrared laser[J]. Journal of Lightwave Technology, 25, 779-786(2007).

    [26] Bricchi E, Kazansky P G. Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass[J]. Applied Physics Letters, 88, 111119(2006).

    [27] Wang P, Chu W, Li W B et al. Aberration-insensitive three-dimensional micromachining in glass with spatiotemporally shaped femtosecond laser pulses[J]. Optics Letters, 43, 3485-3488(2018).

    [28] Vitek D N, Adams D E, Johnson A et al. Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials[J]. Optics Express, 18, 18086-18094(2010).

    [29] Oron D, Tal E, Silberberg Y. Scanningless depth-resolved microscopy[J]. Optics Express, 13, 1468-1476(2005).

    [30] Zhu G H, van Howe J, Durst M et al. Simultaneous spatial and temporal focusing of femtosecond pulses[J]. Optics Express, 13, 2153-2159(2005).

    [31] He F, Xu H, Cheng Y et al. Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses[J]. Optics Letters, 35, 1106-1108(2010).

    [32] Kazansky P G, Yang W J, Bricchi E et al. “Quill” writing with ultrashort light pulses in transparent materials[J]. Applied Physics Letters, 90, 151120(2007).

    [33] Vitek D N, Block E, Bellouard Y et al. Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials[J]. Optics Express, 18, 24673-24678(2010).

    [34] Kazansky P G, Shimotsuma Y, Sakakura M et al. Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front[J]. Optics Express, 19, 20657-20664(2011).

    [35] Salter P S, Booth M J. Dynamic control of directional asymmetry observed in ultrafast laser direct writing[J]. Applied Physics Letters, 101, 141109(2012).

    [36] Poumellec B, Lancry M, Desmarchelier R et al. Parity violation in chiral structure creation under femtosecond laser irradiation in silica glass?[J]. Light: Science & Applications, 5, e16178(2016).

    [37] Jing C R, Wang Z H, Cheng Y. Characteristics and applications of spatiotemporally focused femtosecond laser pulses[J]. Applied Sciences, 6, 428(2016).

    [38] Song H, Dai Y, Song J et al. Femtosecond laser-induced structural difference in fused silica with a non-reciprocal writing process[J]. Applied Physics A, 123, 255(2017).

    [39] Li Q, Li W B, Chu W et al. Effect of spatio-temporal coupling on ultrafast laser direct writing in glass[J]. Chinese Optics Letters, 17, 081402(2019). http://www.opticsjournal.net/Articles/Abstract?aid=OJe47ddbf4890def8c

    [40] Akturk S, Gu X, Gabolde P et al. The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams[J]. Optics Express, 13, 8642-8661(2005).

    [41] Wheeler J A, Borot A, Monchocé S et al. Attosecond lighthouses from plasma mirrors[J]. Nature Photonics, 6, 829-833(2012).

    [42] Vincenti H, Quéré F. Attosecond lighthouses: how to use spatiotemporally coupled light fields to generate isolated attosecond pulses[J]. Physical Review Letters, 108, 113904(2012).

    [43] Quéré F, Vincenti H, Borot A et al. Applications of ultrafast wavefront rotation in highly nonlinear optics[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 47, 124004(2014).

    [44] Sun B S, Salter P S, Roider C et al. Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time[J]. Light: Science & Applications, 7, 17117(2018).

    [45] Froula D H, Turnbull D, Davies A S et al. Spatiotemporal control of laser intensity[J]. Nature Photonics, 12, 262-265(2018).

    [46] Walmsley I, Waxer L, Dorrer C. The role of dispersion in ultrafast optics[J]. Review of Scientific Instruments, 72, 1-29(2001).

    [47] Fiorini C, Sauteret C, Rouyer C et al. Temporal aberrations due to misalignments of a stretcher-compressor system and compensation[J]. IEEE Journal of Quantum Electronics, 30, 1662-1670(1994).

    [48] Gu X, Akturk S, Trebino R. Spatial chirp in ultrafast optics[J]. Optics Communications, 242, 599-604(2004).

    [49] Akturk S, Gu X, Zeek E et al. Pulse-front tilt caused by spatial and temporal chirp[J]. Optics Express, 12, 4399-4410(2004).

    [50] Gorunski N, Dimitrov N, Dreischuh A et al. Pulse-front tilt created in misaligned dispersionless optical systems and correct interferometric autocorrelation[J]. Optics Communications, 283, 5192-5198(2010).

    [51] Perry M D, Mourou G. Terawatt to petawatt subpicosecond lasers[J]. Science, 264, 917-924(1994).

    [52] Kammel R, Ackermann R, Thomas J et al. Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing[J]. Light: Science & Applications, 3, e169(2014).

    [53] Durst M E, Zhu G, Xu C. Simultaneous spatial and temporal focusing in nonlinear microscopy[J]. Optics Communications, 281, 1796-1805(2008).

    [54] Block E, Greco M, Vitek D et al. Simultaneous spatial and temporal focusing for tissue ablation[J]. Biomedical Optics Express, 4, 831-841(2013).

    [55] McCabe D J, Tajalli A, Austin D R et al. Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium[J]. Nature Communications, 2, 447(2011).

    [56] He F, Wang Z H, Zeng B et al. Extraordinary characteristics of spatiotemporally focused laser pulses and their roles in precision materials processing. [C]∥2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), August 24-28, 2015. Busan, Korea (South). IEEE(2015).

    [57] Sudrie L, Couairon A, Franco M et al. Femtosecond laser-induced damage and filamentary propagation in fused silica[J]. Physical Review Letters, 89, 186601(2002).

    [58] Chekalin S V, Kandidov V P. From self-focusing light beams to femtosecond laser pulse filamentation[J]. Physics-Uspekhi, 56, 123-140(2013).

    [59] Brodeur A, Chin S L. Ultrafast white-light continuum generation and self-focusing in transparent condensed media[J]. Journal of the Optical Society of America B, 16, 637-650(1999).

    [60] Chu W, Tan Y X, Wang P et al. Centimeter-height 3D printing with femtosecond laser two-photon polymerization[J]. Advanced Materials Technologies, 3, 1700396(2018).

    [61] Dai Y, Wu G R, Lin X et al. Femtosecond laser induced rotated 3D self-organized nanograting in fused silica[J]. Optics Express, 20, 18072-18078(2012).

    [62] Dai Y, Ye J Y, Gong M et al. Forced rotation of nanograting in glass by pulse-front tilted femtosecond laser direct writing[J]. Optics Express, 22, 28500-28505(2014).

    [63] Wang Z H, Zeng B, Li G H et al. Time-resolved shadowgraphs of transient plasma induced by spatiotemporally focused femtosecond laser pulses in fused silica glass[J]. Optics Letters, 40, 5726-5729(2015).

    [64] Guan J, Liu X, Booth M J. Ultrafast laser writing quill effect in low loss waveguide fabrication regime[J]. Optics Express, 26, 30716-30723(2018).

    [65] Zhukov V P, Akturk S, Bulgakova N M. Asymmetric interactions induced by spatio-temporal couplings of femtosecond laser pulses in transparent media[J]. Journal of the Optical Society of America B, 36, 1556-1564(2019).

    [66] Gu X, Akturk S, Shreenath A et al. The measurement of ultrashort light pulses-simple devices, complex pulses[J]. Optical Review, 11, 141-152(2004).

    [67] Akturk S, Gu X, Bowlan P et al. Spatio-temporal couplings in ultrashort laser pulses[J]. Journal of Optics, 12, 093001(2010).

    [68] Wang Z H, He F, Ni J L et al. Interferometric characterization of pulse front tilt of spatiotemporally focused femtosecond laser pulses[J]. Optics Express, 22, 26328-26337(2014).

    Yuedong Li, Weiyi Yin, Ye Dai. Research Progress on Spatio-Temporal Coupling of Femtosecond Pulse Laser for Direct-Writing Nanograting[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111403
    Download Citation