• Infrared and Laser Engineering
  • Vol. 48, Issue 2, 206004 (2019)
Qi Chao1, Su Dianpeng1, Wang Xiankun1, Wang Mingwei1, Shi Bo1、2, and Yang Fanlin1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201948.0206004 Cite this Article
    Qi Chao, Su Dianpeng, Wang Xiankun, Wang Mingwei, Shi Bo, Yang Fanlin. Fitting algorithm for airborne laser bathymetric waveforms based on layered heterogeneous model[J]. Infrared and Laser Engineering, 2019, 48(2): 206004 Copy Citation Text show less
    References

    [1] Baltsavias E P. Airborne laser scanning: existing systems and firms and other resources[J]. Isprs Journal of Photogrammetry & Remote Sensing, 1999, 54(2-3): 164-198.

    [2] Glennie C L, Carter W E, Shrestha R L, et al. Geodetic imaging with airborne LiDAR: the earth′s surface revealed [J]. Reports on Progress in Physics, 2013, 76(8): 086801.

    [3] Nelson R. How did we get here An early history of forestry LiDAR [J]. Canadian Journal of Remote Sensing, 2013, 39(sup1): S6-S17.

    [4] Rees W G. Physical Principles of Remote Sensing [M] Cambridge: Cambridge University Press, 2001: 372.

    [5] Roncat A, Bergauer G, Pfeifer N. B-spline deconvolution for differential target cross-section determination in full-waveform laser scanning data [J]. Isprs Journal of Photogrammetry & Remote Sensing, 2011, 66(4): 418-428.

    [6] Wang C, Li Q, Liu Y, et al. A comparison of waveform processing algorithms for single-wavelength LiDAR bathymetry [J]. Isprs Journal of Photogrammetry & Remote Sensing, 2015, 101(101): 22-35.

    [7] Roncat A, Wagner W, Melzer T, et al. Echo detection and localization in full-waveform airborne laser scanner data using the averaged square difference function estimator [J]. Photogrammetric Journal of Finland, 2008, 21: 62-75.

    [8] Wagner W, Ullrich A, Melzer T, et al. From single-pulse to full-waveform airborne laser scanners: potential and practical challenges [C]//International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2014:201-206.

    [9] Chauve A, Mallet C, Bretar F, et al. Processing full-waveform LiDAR data: modelling raw signals [J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2007, XXXVI(Part 3/W52): 102-107.

    [10] Mallet C, Bretar F. Full-waveform topographic LiDAR: state-of-the-art [J]. Isprs Journal of Photogrammetry & Remote Sensing, 2009, 64(1): 1-16.

    [11] Slota M. Decomposition techniques for full-waveform airborne laser scanning data [J]. Geomatics and Environmental Engineering, 2014, 8(1): 61-74.

    [12] Wagner W, Ullrich A, Ducic V, et al. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2006, 60(2): 100-112.

    [13] Jutzi B, Stilla U. Range determination with waveform recording laser systems using a wiener filter[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2006, 61(2): 95-107.

    [14] Wu J, Aardt J A N V, Asner G P. A comparison of signal deconvolution algorithms based on small-footprint LiDAR waveform simulation [J]. IEEE Transactions on Geoscience & Remote Sensing, 2011, 49(6): 2402-2414.

    [15] Wang Dandi, Xu Qing, Xing Shuai, et al. Comparison of signal extraction method for airborne LiDAR bathymetry based on deconvolution[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2): 161-169. (in Chinese)

    [16] Lin Yushan, Zhang Zhi′an. Waveform analysis and landcover classification using airborne full-waveform LiDAR data [J]. Journal of Photogrammetry and Remote Sensing, 2014, 19(2): 75-91. (in Chinese)

    [17] Abdallah H, Baghdadi N, Bailly J S, et al. Wa-LiD: a new LiDAR simulator for waters[J]. IEEE Geoscience & Remote Sensing Letters, 2012, 9(4): 744-748.

    [18] Sun Lei, Zhang Zhili, Tan Lilong, et al. Denoising method of dynamic grating Moiré signal based on wavelet threshold [J]. Infrared and Laser Engineering, 2010, 39(3): 576-580. (in Chinese)

    [19] Hofton M, Minster J B, Blair J B. Decomposition of laser altimeter waveforms [J]. IEEE Transactions on Geoscience & Remote Sensing, 2000, 38(4): 1989-1996.

    [20] Wong H, Antoniou A. Characterization and decomposition of waveforms for Larsen 500 airborne system [J]. IEEE Transactions on Geoscience & Remote Sensing, 1991, 29(6): 912-921.

    [21] Zhou Hui, Li Song, Wang Liangxun, et al. Influence of noise on range error for satellite laser altimeter [J]. Infrared and Laser Engineering, 2015, 44(8): 2256-2261. (in Chinese)

    [22] Li Pengcheng, Xu Qing, Xing Shuai, et al. Full-waveform LiDAR data decomposition method based on global convergent LM [J]. Infrared and Laser Engineering, 2015, 44(8): 2262-2267. (in Chinese)

    [23] Moré J J. The Levenberg-Marquardt algorithm: implemen-tation and theory [J]. Lecture Notes in Mathematics, 1978, 630: 105-116.

    [24] Guenther G C. Airborne laser hydrography: system design and performance factors [R]. MD: National Ocean Service 1, National Oceanic and Atmospheric Administration, 1985.

    [25] Klett J D. Stable analytical inversion solution for processing LiDAR returns [J]. Appl Opt, 1981, 20(2): 211-220.

    [26] Billard B, Abbot R H, Penny M F. Airborne estimation of sea turbidity parameters from the WRELADS laser airborne depth sounder [J]. Applied Optics, 1986, 25(13): 2080.

    [27] Yao Chunhua, Chen Weibiao, Zang Huaguo, et al. Study of the capability of minimum depth using an airborne laser bathymetry [J]. Acta Optica Sinica, 2004, 24(10): 1406-1410. (in Chinese)

    Qi Chao, Su Dianpeng, Wang Xiankun, Wang Mingwei, Shi Bo, Yang Fanlin. Fitting algorithm for airborne laser bathymetric waveforms based on layered heterogeneous model[J]. Infrared and Laser Engineering, 2019, 48(2): 206004
    Download Citation