• Photonics Research
  • Vol. 6, Issue 8, 776 (2018)
Yating Wan1,†,*, Daisuke Inoue1,2,†, Daehwan Jung1,†..., Justin C. Norman3, Chen Shang3, Arthur C. Gossard3,4 and John E. Bowers3,4|Show fewer author(s)
Author Affiliations
  • 1Institute for Energy Efficiency, University of California Santa Barbara, Santa Barbara, California 93106, USA
  • 2Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8552, Japan
  • 3Materials Department, University of California Santa Barbara, Santa Barbara, California 93106, USA
  • 4Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, California 93106, USA
  • show less
    DOI: 10.1364/PRJ.6.000776 Cite this Article Set citation alerts
    Yating Wan, Daisuke Inoue, Daehwan Jung, Justin C. Norman, Chen Shang, Arthur C. Gossard, John E. Bowers, "Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability," Photonics Res. 6, 776 (2018) Copy Citation Text show less
    References

    [1] L. Ge, L. Feng, H. G. L. Schwefel. Optical microcavities: new understandings and developments. Photon. Res., 5, OM1-OM3(2017).

    [2] M. T. Hill, M. C. Gather. Advances in small lasers. Nat. Photonics, 8, 908-918(2014).

    [3] S. Longhi, L. Feng. Unidirectional lasing in semiconductor microring lasers at an exceptional point [Invited]. Photon. Res., 5, B1-B6(2017).

    [4] T. Harayama, S. Sunada, S. Shinohara. Universal single-mode lasing in fully-chaotic two-dimensional microcavity lasers under continuous wave operation with large pumping power [Invited]. Photon. Res., 5, B39-B46(2017).

    [5] S. J. Herr, K. Buse, I. Breunig. LED-pumped whispering-gallery laser. Photon. Res., 5, B34-B38(2017).

    [6] J. Ma, X. Jiang, M. Xiao. Kerr frequency combs in large size, ultra-high-Q toroid microcavities with low repetition rates. Photon. Res., 5, B54-B58(2017).

    [7] Y. Han, Q. Li, S. Zhu, K. W. Ng, K. M. Lau. Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths. Appl. Phys. Lett., 111, 212101(2017).

    [8] Y. Shi, Z. Wang, J. V. Campenhout, M. Pantouvaki, W. Guo, B. Kunert, D. V. Thourhout. Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer. Optica, 4, 1468-1473(2017).

    [9] Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Campenhout, C. Merckling, D. Thourhout. Room-temperature InP distributed feedback laser array directly grown on silicon. Nat. Photonics, 9, 837-842(2015).

    [10] Y. Wan, Q. Li, A. Y. Liu, W. W. Chow, A. C. Gossard, J. E. Bowers, E. L. Hu, K. M. Lau. Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates. Appl. Phys. Lett., 108, 221101(2016).

    [11] N. Kryzhanovskaya, E. Moiseev, Y. Polubavkina, M. Maximov, M. Kulagina, S. Troshkov, Y. Zadiranov, Y. Guseva, A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, A. Zhukov. Heat-sink free CW operation of injection microdisk lasers grown on Si substrate with emission wavelength beyond 1.3  μm. Opt. Lett., 42, 3319-3322(2017).

    [12] Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, J. E. Bowers. Sub-mA threshold 1.3 μm CW lasing from electrically pumped micro-rings grown on (001) Si. Proceedings of CLEO: Applications and Technology, JTh5C.3(2017).

    [13] S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, T. F. Krauss. Reduced surface sidewall recombination and diffusion in quantum-dot lasers. IEEE Photon. Technol. Lett., 18, 1861-1863(2006).

    [14] J. Gérard, O. Cabrol, B. Sermage. InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si. Appl. Phys. Lett., 68, 3123-3125(1996).

    [15] J. Wang, H. Hu, C. Deng, Y. He, Q. Wang, X. Duan, Y. Huang, X. Ren. Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition. Chin. Phys. B, 24, 028101(2015).

    [16] M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, H. Liu. Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. IEEE J. Sel. Top. Quantum Electron., 22, 50-56(2016).

    [17] J. C. Norman, D. Jung, Y. Wan, J. E. Bowers. Perspective: the future of quantum dot photonic integrated circuits. APL Photon., 3, 030901(2018).

    [18] D. Bimberg, U. W. Pohl. Quantum dots: promises and accomplishments. Mater. Today, 14, 388-397(2011).

    [19] Z. Zhou, B. Yin, J. Michel. On-chip light sources for silicon photonics. Light Sci. Appl., 4, e358(2015).

    [20] S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, H. Liu. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photonics, 10, 307-311(2016).

    [21] D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, J. E. Bowers. Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency. ACS Photon., 5, 1094-1100(2017).

    [22] Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, J. E. Bowers. 1.3  μm submilliamp threshold quantum dot microlasers on Si. Optica, 4, 940-944(2017).

    [23] Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, S. Yu. Monolithic quantum-dot distributed feedback laser array on silicon. Optica, 5, 528-533(2018).

    [24] J. Kwoen, B. Jang, J. Lee, T. Kageyama, K. Watanabe, Y. Arakawa. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001). Opt. Express, 26, 11568-11576(2018).

    [25] J. Wang, H. Hu, H. Yin, Y. Bai, J. Li, X. Wei, Y. Liu, Y. Huang, X. Ren, H. Liu. 1.3  μm InAs/GaAs quantum dot lasers on silicon with GaInP upper cladding layers. Photon. Res., 6, 321-325(2018).

    [26] S. Liu, D. Jung, J. Norman, M. Kennedy, A. Gossard, J. Bowers. 490  fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si. Electron. Lett., 54, 432-433(2018).

    [27] D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, J. E. Bowers. High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si. Appl. Phys. Lett., 111, 122107(2017).

    [28] D. A. Miller. Device requirements for optical interconnects to silicon chips. Proc. IEEE, 97, 1166-1185(2009).

    [29] R. R. Alexander, D. T. Childs, H. Agarwal, K. M. Groom, H.-Y. Liu, M. Hopkinson, R. A. Hogg, M. Ishida, T. Yamamoto, M. Sugawara, Y. Arakawa, T. J. Badcock, R. J. Royce, D. J. Mowbray. Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers. IEEE J. Quantum Electron., 43, 1129-1139(2007).

    [30] K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, Y. Arakawa. Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments. Jpn. J. Appl. Phys. Part 2, 43, L1124-L1126(2004).

    [31] Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, K. M. Lau. Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources. Appl. Phys. Lett., 109, 011104(2016).

    [32] Y. Wan, J. Norman, D. Jung, C. Shang, L. Macfarlane, Q. Li, M. J. Kennedy, Z. Zhang, A. C. Gossard, E. L. Hu, K. M. Lau, J. E. Bowers. O-band electrically injected InAs quantum-dot micro-ring lasers on V-groove patterned and unpatterned (001) silicon. Opt. Express, 25, 26853-26860(2017).

    [33] O. B. Shchekin, D. G. Deppe. Low-threshold high-to 1.3-μm InAs quantum-dot lasers due to P-type modulation doping of the active region. IEEE Photon. Technol. Lett., 14, 1231-1233(2002).

    [34] D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, J. E. Bowers. Low threading dislocation density GaAs growth on on-axis GaP/Si (001). J. Appl. Phys., 122, 225703(2017).

    [35] A. Y. Liu, C. Zhang, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, J. E. Bowers. MBE growth of P-doped 1.3  μm InAs quantum dot lasers on silicon. J. Vac. Sci. Technol. B, 32, 02C108(2014).

    [36] R. L. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, J. E. Bowers. High speed quantum well lasers and carrier transport effects. IEEE J. Quantum Electron., 28, 1990-2008(1992).

    [37] D. Innoue, D. Jung, J. Norman, Y. Wan, N. Nishyama, S. Arai, A. C. Gossard, J. E. Bowers. Directly modulated 1.3  μm quantum dot lasers epitaxially grown on silicon. Opt. Express, 26, 7022-7033(2018).

    [38] J. E. Bowers, B. R. Hemenway, A. H. Gnauck, D. P. Wilt. High-speed InGaAsP constricted-mesa lasers. IEEE J. Quantum Electron., 22, 833-844(1986).

    [39] T. Kageyama, Q. H. Vo, K. Watanabe, K. Takemasa, M. Sugawara, S. Iwamoto, Y. Arakawa. Large modulation bandwidth (13.1  GHz) of 1.3  μm-range quantum dot lasers with high dot density and thin barrier layer. Proceedings of the Compound Semiconductor Week (CSW’2016), MoC3–4(2016).

    [40] D. Arsenijević, D. Bimberg. Quantum-dot lasers for 35  Gbit/s pulse-amplitude modulation and 160  Gbit/s differential quadrature phase-shift keying. Proc. SPIE, 9892, 98920S(2016).

    CLP Journals

    [1] Haomiao Wang, Hongyu Chai, Zunren Lv, Zhongkai Zhang, Lei Meng, Xiaoguang Yang, Tao Yang. Silicon photonic transceivers for application in data centers[J]. Journal of Semiconductors, 2020, 41(10): 101301

    [2] N. V. Kryzhanovskaya, E. I. Moiseev, F. I. Zubov, A. M. Mozharov, M. V. Maximov, N. A. Kalyuzhnyy, S. A. Mintairov, M. M. Kulagina, S. A. Blokhin, K. E. Kudryavtsev, A. N. Yablonskiy, S. V. Morozov, Yu. Berdnikov, S. Rouvimov, A. E. Zhukov, "Direct modulation characteristics of microdisk lasers with InGaAs/GaAs quantum well-dots," Photonics Res. 7, 664 (2019)

    Yating Wan, Daisuke Inoue, Daehwan Jung, Justin C. Norman, Chen Shang, Arthur C. Gossard, John E. Bowers, "Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability," Photonics Res. 6, 776 (2018)
    Download Citation