[1] G. H. Patterson, "Fluorescence microscopy below the diffraction limit," Semin. Cell Dev. Biol. 20(8), 886–893 (2009).
[2] P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, "Super-resolution video microscopy of live cells by structured illumination," Nat. Methods 6(5), 339–342 (2009).
[3] A. G. York, S. H. Parekh, D. D. Nogare, R. S. Fischer, K. Temprine, M. Mione et al., "Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy," Nat. Methods 9(6), 749–754 (2012).
[4] Q. Yang, L. C. Cao, H. Zhang, G. F. Jin, "Method of lateral image reconstruction in structured illumination microscopy with super resolution," J. Innov. Opt. Heal. Sci. 9(3), 1630002 (2012).
[5] X. C. Wang, J. H.Wang, X. P. Zhu, Y. Zheng, K. Si, W. Gong, Super-resolution microscopy and its applications in neuroscience, J. Innov. Opt. Heal. Sci. 10(5), 1730001 (2017).
[6] K. Zhanghao, J. T. Gao, D. Y. Jin, X. D. Zhang, P. Xi, "Super-resolution fluorescence polarization microscopy," J. Innov. Opt. Heal. Sci. 11(1), 1730020 (2018).
[7] M. S. Zhang, Z. F. Fu, P. Y. Xu, "Extending the spatiotemporal resolution of super-resolution microscopies using photomodulatable fluorescent proteins," J. Innov. Opt. Heal. Sci. 9(3), 1630009 (2016).
[8] S. W. Hell, J. Wichmann. "Breaking the diffraction resolution limit by stimulated-emission-depletion fluorescence microscopy," Opt. Lett. 19(11), 780– 782 (1994).
[9] T. A. Klar, S. W. Hell, "Subdi?raction resolution in far-field fluorescence microscopy," Opt Lett. 24(14), 954–956 (1999).
[10] M. Hofmann, C. Eggeling, S. Jakobs, S. W. Hell, "Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins," Proc. Natl. Acad. Sci. U. S. A. 102(49), 17565–17569 (2005).
[11] A. Lal, C. Y. Shan, P. Xi, "Structured Illumination Microscopy Image Reconstruction Algorithm," IEEE J. Sel. Top. Quant. 22(4), 249–275 (2016).
[12] M. J.Rust,M. Bates,X.W. Zhuang, "Sub-diffractionlimit imaging by stochastic optical reconstruction microscopy (STORM)," Nat. Methods 3(10), 793–795 (2006).
[13] E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino et al., "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313(5793), 1642–1645 (2006).
[14] S. T. Hess, T. P. K. Girirajan, M. D. Mason, "Ultrahigh resolution imaging by fluorescence photoactivation localization microscopy," Biophys. J. 91 (11), 4258–4272 (2006).
[15] K.Xu, H. P.Babcock, X. W. Zhuang, "Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton," Nat. Methods 9(2), 185–188 (2012).
[16] Y. N. Mu, T. Zhang, T. Q. Chen, F. Q. Tang, J. K. Yang, C. Y. Liu et al., "Manufacturing and characterization on a three-dimensional random resonator of porous silicon/TiO2 nanowires for continuous light pumping lasing of perovskite quantum dots," NANO 15(2), 447–452 (2020).
[17] H. B. Fan, Y. N. Mu, C. Y. Liu, Y. Zhu, G. Z. Liu, S. Wang et al., "Random lasing of CsPbBr3 perovskite thin films pumped by modulated electron beam," Chin. Opt. Lett. 18(1), 780–790 (2020).
[18] J. Gustafsson, P. Mikkola, M. Jokinen, J. B. Rosenholm, "The influence of pH and NaCl on the zeta potential and rheology of anatase dispersions," Colloid Surf. A 175(3), 349–359 (2000).
[19] J. L. Chen, C. M. Qiu, M. H. You, X. G. Chen, H. Q. Yang, S. S. Xie, "Structured illumination microscopy and its new developments," J. Innov. Opt. Heal. Sci. 9(3), 1630010 (2016).
[20] E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes et al., "Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution," Proc. Natl. Acad. Sci. U. S. A. 109(3), E135–E143 (2012).
[21] R. Heintzmann, "Saturated patterned excitation microscopy with two-dimensional excitation patterns," Micron 34(6), 283–291, (2003).
[22] M. G. L. Gustafsson, "Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution," Proc. Natl. Acad. Sci. U. S. A. 102(37), 13081–13086 (2005).
[23] H. Choi, E. Y. S. Yew, B. Hallacoglu, S. Fantini, C. J. R. Sheppard, P. T. C. So, "Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination," Biomed. Opt. Express 4(7), 995–1005 (2013).
[24] H. Li, J. Yu, R. L. Zhang, X. Li, W. Zheng, "Twophoton excitation fluorescence lifetime imaging microscopy: A promising diagnostic tool for digestive tract tumors," J. Innov. Opt. Heal. Sci. 12(5), 1930009 (2019).
[25] A. M. Larson, A. Lee, P. F. Lee, K. J. Bayless, A. T. Yeh, "Ultrashort pulse multispectral non-linear optical microscopy," J. Innov. Opt. Heal. Sci. 2(1), 27– 35 (2009).
[26] R. J. Gilbert, V. J. Napadow, C. Buehler, P. T. C. So, "Three-dimensionally resolved deep tissue imaging of skeletal muscle from the bovine tongue using two-photon microscopy," Biophys J. 76(1), A97–A101 (1999).
[27] O. Varnavski, T. Goodson, "Two-photon fluorescence microscopy at extremely low excitation intensity: The power of quantum correlations," J. Am. Chem. Soc. 142(30), 12966–12975 (2020).
[28] Q. L. Liu, C. F. Kuang, Y. Fang, P. Xiu, Y. C. Li, R. X. Wen et al., "Effect of spatial spectrum overlap on Fourier ptychographic microscopy," J. Innov. Opt. Heal. Sci. 10(2), 1641004 (2017).
[29] V. Perez, B. J. Chang, E. H. K. Stelzer, "Optimal 2DSIM reconstruction by two filtering steps with Richardson-Lucy deconvolution," Sci. Rep. 6(9), 37149 (2016).