• Opto-Electronic Advances
  • Vol. 1, Issue 9, 180015 (2018)
Yu Zheng1、2, Zhifang Wu2、3、*, Perry Ping Shum1、2, Zhilin Xu4, Gerd Keiser5, Georges Humbert6, Hailiang Zhang1、2, Shuwen Zeng6, and Xuan Quyen Dinh2、7
Author Affiliations
  • 1COFT, School of EEE, Nanyang Technological University, Singapore 639798, Singapore
  • 2CINTRA, CNRS/NTU/Thales Research Alliance, Singapore 637553, Singapore
  • 3Fujian Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
  • 4Center for Gravitational Experiments, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 5Department of Electrical and Computer Engineering, Boston University, Boston 02215, USA
  • 6XLIM Research Institute, UMR 7252 CNRS/University of Limoges, Limoges 87060, France
  • 7R&T, Thales Solutions Asia Pte Ltd, Singapore 498755, Singapore
  • show less
    DOI: 10.29026/oea.2018.180015 Cite this Article
    Yu Zheng, Zhifang Wu, Perry Ping Shum, Zhilin Xu, Gerd Keiser, Georges Humbert, Hailiang Zhang, Shuwen Zeng, Xuan Quyen Dinh. Sensing and lasing applications of whispering gallery mode microresonators[J]. Opto-Electronic Advances, 2018, 1(9): 180015 Copy Citation Text show less

    Abstract

    Optical whispering gallery mode (WGM) microresonators have attracted great attention due to their remarkable properties such as extremely high quality factor, small mode volume, tight confinement of modes, and strong evanescent field. All these properties of WGM microresonators have ensured their great potentials for applications, such as physical sensors, bio/chemical sensors and microlasers. In this mini-review, the key parameters and coupling conditions of WGM microresonators are firstly introduced. The geometries of WGM optical microcavities are presented based on their fabrication methods. This is followed by the discussion on the state-of-the-art applications of WGM microresonators in sensors and microlasers.
    $ m\lambda = 2{\rm{ \mathsf{ π} }}R{n_{{\rm{eff}}}}, $ (1)

    View in Article

    $ \begin{array}{l} {\lambda ^{ - 1}}(R, {n_1}, {n_{\rm{r}}}, r, m) = \\ \;\;\;\;\;\frac{1}{{2{\rm{ \mathsf{ π} }}R{n_1}}}\left[{m + \frac{1}{2} + {2^{-\frac{1}{3}}}\eta (r){{\left( {m + \frac{1}{2}} \right)}^{\frac{1}{3}}}-} \right.\\ \;\;\;\;\;\;\frac{L}{{{{(n_{\rm{r}}^{\rm{2}}-1)}^{\frac{1}{2}}}}} + \frac{3}{{10}} \cdot {2^{\frac{2}{3}}} \cdot {\eta ^2}(r){\left( {m + \frac{1}{2}} \right)^{ - \frac{1}{3}}} - \\ \left. {\;\;\;\;\;{2^{ - \frac{1}{3}}}\left( {n_{\rm{r}}^{\rm{2}} - \frac{2}{3}{L^2}} \right)\frac{{\eta (r){{\left( {m + \frac{1}{2}} \right)}^{ - \frac{2}{3}}}}}{{{{(n_r^{\rm{2}} - 1)}^{\frac{3}{2}}}}}} \right], \end{array} $ (2)

    View in Article

    $ {Q_0} = \omega \frac{{{E_{{\rm{stored}}}}}}{{{P_{{\rm{diss}}}}}} = \omega \tau = \frac{\omega }{{\Delta \omega }}, $ (3)

    View in Article

    $ Q_0^{ - 1} = Q_{{\rm{mat}}}^{ - {\rm{1}}} + Q_{{\rm{rad}}}^{ - {\rm{1}}} + Q_{{\rm{sca}}}^{ - {\rm{1}}} + Q_{{\rm{cont}}}^{ - {\rm{1}}}, $ (4)

    View in Article

    $ {Q_{{\rm{mat}}}} = \frac{{2{\rm{ \mathsf{ π} }}n}}{{\alpha \lambda }}, $ (5)

    View in Article

    $ {Q_{{\rm{rad}}}} = \frac{1}{2}\left( {m + \frac{1}{2}} \right){n^{(2p - 1)}}{({n^2} - 1)^{\frac{1}{2}}}{{\rm{e}}^{2{T_{r, m}}}}, $ (6)

    View in Article

    $ \begin{array}{l} \;\;\;\;\;\;\;\;\;\;\;\;\;\;{T_{r, m}} = \left( {m + \frac{1}{2}} \right)({\beta _{r, m}} - \tanh {\beta _{r, m}}), \\ {\beta _{r, m}} = {\cosh ^{ - 1}}\left\{ {n{{\left[{1-\left( {\frac{1}{{m + \frac{1}{2}}}} \right)\left( {{A_{\rm{r}}}{{\left( {\frac{{2m + 1}}{4}} \right)}^{\frac{1}{3}}} + \frac{{{n^{1-2p}}}}{{{{({n^2}-1)}^{\frac{1}{2}}}}}} \right)} \right]}^{ - 1}}} \right\}, \end{array} $ (7)

    View in Article

    $ {Q_{{\rm{sca}}}} = \frac{{{\lambda ^2}R}}{{{{\rm{ \mathsf{ π} }}^2}\sigma _{{\rm{rms}}}^{\rm{2}}B}}, $ (8)

    View in Article

    $ V = 3.4{{\rm{ \mathsf{ π} }}^{\frac{3}{2}}}{\left( {\frac{\lambda }{{2{\rm{ \mathsf{ π} }}n}}} \right)^3}{m^{\frac{{11}}{6}}}\sqrt {m - v + 1}, $ (9)

    View in Article

    $ {\beta _{{\rm{ms}}}} = kl/{x_{rlm}}, $ (10)

    View in Article

    $ {\beta _{{\rm{ft}}}} = {\left( {{k^2}{{n'}^2} - {{2.405}^2} \cdot {{\left( {\frac{\rho }{2}} \right)}^{ - 2}}} \right)^{\frac{1}{2}}}, $ (11)

    View in Article

    Yu Zheng, Zhifang Wu, Perry Ping Shum, Zhilin Xu, Gerd Keiser, Georges Humbert, Hailiang Zhang, Shuwen Zeng, Xuan Quyen Dinh. Sensing and lasing applications of whispering gallery mode microresonators[J]. Opto-Electronic Advances, 2018, 1(9): 180015
    Download Citation