• Journal of the European Optical Society-Rapid Publications
  • Vol. 18, Issue 2, 2022008 (2022)
Khalil S. Al-Ghafri1、*, Edamana V. Krishnan2, and Anjan Biswas3、4、5、6、7
Author Affiliations
  • 1University of Technology and Applied Sciences, P.O. Box 14, Ibri 516, Oman
  • 2Department of Mathematics, Sultan Qaboos University, P.O.Box 36, Al-Khod 123, Muscat, Oman
  • 3Department of Mathematics and Physics, Grambling State University, Grambling, LA 71245, USA
  • 4Mathematical Modeling and Applied Computation (MMAC) Research Group, Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
  • 5Department of Applied Mathematics, National Research Nuclear University, 31 Kashirskoe Hwy, Moscow 115409, Russian Federation
  • 6Department of Applied Sciences, Cross-Border Faculty, Dunarea de Jos University of Galati, 111 Domneasca Street, Galati 800201, Romania
  • 7Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Medunsa 0204, Pretoria, South Africa
  • show less
    DOI: 10.1051/jeos/2022008 Cite this Article
    Khalil S. Al-Ghafri, Edamana V. Krishnan, Anjan Biswas. Cubic–quartic optical soliton perturbation and modulation instability analysis in polarization-controlled fibers for Fokas–Lenells equation[J]. Journal of the European Optical Society-Rapid Publications, 2022, 18(2): 2022008 Copy Citation Text show less
    References

    [1] G.P. Agrawal. Nonlinear fiber optics. Nonlinear Science at the Dawn of the 21st Century, 195-211(2000).

    [2] C. De Angelis. Nonlinear optics. Front. Photonics, 1, 628215(2021).

    [3] W. Liu, L. Pang, H. Han, M. Liu, M. Lei, S. Fang, H. Teng, Z. Wei. Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers. Opt. Express, 25, 2950-2959(2017).

    [4] W. Liu, L. Pang, H. Han, K. Bi, M. Lei, Z. Wei. Tungsten disulphide for ultrashort pulse generation in all-fiber lasers. Nanoscale, 9, 5806-5811(2017).

    [5] W. Liu, Y.-N. Zhu, M. Liu, B. Wen, S. Fang, H. Teng, M. Lei, L.-M. Liu, Z. Wei. Optical properties and applications for MoS 2-Sb 2 Te 3-MoS 2 heterostructure materials. Photonics Res., 6, 220-227(2018).

    [6] X. Meng, J. Li, Y. Guo, Y. Liu, S. Li, H. Guo, W. Bi, H. Lu, T. Cheng. Experimental study on a high-sensitivity optical fiber sensor in wide-range refractive index detection. JOSA B, 37, 3063-3067(2020).

    [7] H. Triki, A.-M. Wazwaz. Combined optical solitary waves of the Fokas–Lenells equation. Waves Random Complex Media, 27, 587-593(2017).

    [8] H. Triki, A.-M. Wazwaz. New types of chirped soliton solutions for the Fokas–Lenells equation. Int. J. Numer. Methods Heat Fluid Flow, 27, 1596-1601(2017).

    [9] A. Biswas, M. Ekici, A. Sonmezoglu, R.T. Alqahtani. Optical soliton perturbation with full nonlinearity for Fokas–Lenells equation. Optik, 165, 29-34(2018).

    [10] A.J.M. Jawad, A. Biswas, Q. Zhou, S.P. Moshokoa, M. Belic. Optical soliton perturbation of Fokas–Lenells equation with two integration schemes. Optik, 165, 111-116(2018).

    [11] A. Biswas, H. Rezazadeh, M. Mirzazadeh, M. Eslami, M. Ekici, Q. Zhou, S.P. Moshokoa, M. Belic. Optical soliton perturbation with Fokas–Lenells equation using three exotic and efficient integration schemes. Optik, 165, 288-294(2018).

    [12] A. Biswas. Chirp-free bright optical soliton perturbation with Fokas–Lenells equation by traveling wave hypothesis and semi-inverse variational principle. Optik, 170, 431-435(2018).

    [13] A. Aljohani, E. El-Zahar, A. Ebaid, M. Ekici, A. Biswas. Optical soliton perturbation with Fokas–Lenells model by Riccati equation approach. Optik, 172, 741-745(2018).

    [14] M. Osman, B. Ghanbari. New optical solitary wave solutions of Fokas–Lenells equation in presence of perturbation terms by a novel approach. Optik, 175, 328-333(2018).

    [15] E. Krishnan, A. Biswas, Q. Zhou, M. Alfiras. Optical soliton perturbation with Fokas–Lenells equation by mapping methods. Optik, 178, 104-110(2019).

    [16] M. Arshad, D. Lu, M.-U. Rehman, I. Ahmed, A.M. Sultan. Optical solitary wave and elliptic function solutions of Fokas–Lenells equation in presence of perturbation terms and its modulation instability. Phys. Scr., 94, 105202(2019).

    [17] O. González-Gaxiola, A. Biswas, M.R. Belic. Optical soliton perturbation of Fokas–Lenells equation by the Laplace-Adomian decomposition algorithm. J. Eur. Opt. Soc. Rapid Publ., 15, 13(2019).

    [18] K. Al-Ghafri, E. Krishnan, A. Biswas. Chirped optical soliton perturbation of Fokas–Lenells equation with full nonlinearity. Adv. Differ. Equ., 2020, 1-12(2020).

    [19] O. González-Gaxiola, A. Biswas, F. Mallawi, M.R. Belic. Cubic-quartic bright optical solitons with improved Adomian decomposition method. J. Adv. Res., 21, 161-167(2020).

    [20] G. Genc, M. Ekici, A. Biswas, M.R. Belic. Cubic-quartic optical solitons with Kudryashov’s law of refractive index by F-expansions schemes. Results Phys, 18, 103273(2020).

    [21] Y. Yldrm, A. Biswas, A.H. Kara, M. Ekici, A.K. Alzahrani, M.R. Belic. Cubic–quartic optical soliton perturbation and conservation laws with generalized Kudryashov’s form of refractive index. J. Opt., 50, 354-360(2021).

    [22] E.M. Zayed, T.A. Nofal, M.E. Alngar, M.M. El-Horbaty. Cubic-quartic optical soliton perturbation in polarization-preserving fibers with complex Ginzburg-Landau equation having five nonlinear refractive index structures. Optik, 231, 166381(2021).

    [23] S. Kumar, S. Malik. Cubic-quartic optical solitons with Kudryashov’s law of refractive index by Lie symmetry analysis. Optik, 242, 167308(2021).

    [24] E.M. Zayed, K.A. Gepreel, M.E. Alngar, A. Biswas, A. Dakova, M. Ekici, H.M. Alshehri, M.R. Belic. Cubic–quartic solitons for twin-core couplers in optical metamaterials. Optik, 245, 167632(2021).

    [25] E.M. Zayed, M.E. Alngar, A. Biswas, Y. Yldrm, S. Khan, A.K. Alzahrani, M.R. Belic. Cubic–quartic optical soliton perturbation in polarization-preserving fibers with Fokas–Lenells equation. Optik, 234, 166543(2021).

    [26] A. Biswas, A. Dakova, S. Khan, M. Ekici, L. Moraru, M. Belic. Cubic-quartic optical soliton perturbation with Fokas–Lenells equation by semi-inverse variation. Semicond. Phys. Quantum Electron. Optoelectron., 24, 431-435(2021).

    [27] Y. Yıldırım, A. Biswas, A. Dakova, S. Khan, S.P. Moshokoa, A.K. Alzahrani, M.R. Belic. Cubic-quartic optical soliton perturbation with Fokas–Lenells equation by sine–Gordon equation approach. Results Phys, 26, 104409(2021).

    [28] K. Al-Ghafri, E. Krishnan, A. Biswas, M. Ekici. Optical solitons having anti-cubic nonlinearity with a couple of exotic integration schemes. Optik, 172, 794-800(2018).

    [29] K.K. Al-Kalbani, K. Al-Ghafri, E. Krishnan, A. Biswas. Solitons and modulation instability of the perturbed Gerdjikov-Ivanov equation with spatio-temporal dispersion. Chaos Solitons Fractals, 153(2021).

    Khalil S. Al-Ghafri, Edamana V. Krishnan, Anjan Biswas. Cubic–quartic optical soliton perturbation and modulation instability analysis in polarization-controlled fibers for Fokas–Lenells equation[J]. Journal of the European Optical Society-Rapid Publications, 2022, 18(2): 2022008
    Download Citation