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Abstract. The objective of this study is to investigate miscellaneous wave structures for perturbed Fokas—
Lenells equation (FLE) with cubic-quartic dispersion in polarization-preserving fibers. Based on the improved
projective Riccati equations method, various types of soliton solutions such as bright soliton, combo dark—
bright soliton, singular soliton and combo singular soliton are constructed. Additionally, a set of periodic
singular waves are also retrieved. The dynamical behaviors of some obtained solutions are depicted to
provide a key to understanding the physics of the model. The modulation instability of the FLE is reported
by employing the linear stability analysis which shows that all solutions are stable.
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1 Introduction

Recently, nonlinear optics has become one of the important
fields of science that have wide range of physical and engi-
neering applications. The significance of this field has been
enhanced since the appearance of optical fiber as a common
type of optical waveguide that transmits light and signals
over longe distances [1, 2|. Further to this, the continuous
theoretical and experimental research works confirm that
optical fiber has potential influences on developing photonic
and optoelectronic devices [3-6]. One of the diagnostic tools
to examine the physical properties of optical fiber is the
optical pulses. The controllable interaction of dispersion
and nonlinearity of the pulse propagation leads to the
formation of stable and undistorted pulses known as soliton.
There are several mathematical models that study the
dynamic of soliton in optical fibers. One of these models

* Corresponding author: khalil.ibr@cas.edu.om

that is accounted as a generalized form of the nonlinear
Schrodinger equation is the Fokas-Lenells equation
(FLE). In literature, FLE is dealt with by many authors to
obtain exact solutions by utilizing various powerful
techniques. The employed integration schemes in the previ-
ous studies are Sine-Gordon expansion method, Riccati
equation method, mapping method, trial equation method,
Kudryashov’s method, semi-inverse variational principle,
modified simple equation method, Laplace-Adomian decom-
position method, auxiliary equation method and many
others. For more details, readers are referred to references
[7-18].

Soliton propagation along an optical fiber can be subject
to the low count of chromatic dispersion (CD) which
severely affects the transmission process. To overcome this
effect, a variety of novel techniques have recently been pro-
posed. One of the most popular technologies employed in
the research studies is based on adding another form of
dispersion such as Bragg gratings dispersion, pure—cubic
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dispersion, pure—quartic dispersion, cubic—quartic disper-
sion and many others. For example, the combination of
fourth-order dispersion (40D) and third-order dispersion
(30D) terms can completely compensate for low CD and
gives rise to creation of the so-called cubic—quartic (CQ)
solitons, see the references [19-24]. Later, the model of
FLE is developed to include 40D and 30D terms and that
means CQ solitons can be constructed in polarization pre-
serving fibers [25-27]. The current study mainly discusses
CQ-FLE with perturbation terms of Hamiltonian type.
The proposed model takes the form

W+ 0¥y + D e + [P (P + idP,)
= i{o¥, + 2(|PI"Y), + n(1P[), ¥}, (1)

where W(z, t) is is a complex-valued function representing
optical soliton profile. The independent variables z and ¢
denote the distance along the fiber and the elapsed time,
respectively. The first term indicates the time evolution
while the terms with a and b account for the third- and
fourth-order dispersions. The nonlinear influence has the
form of Kerr law and is given by the coefficient of c.
The term with d is the coefficient of nonlinear dispersion.
On the right-hand side of equation (1), the perturbation
terms with o, A and u are defined as inter-modal disper-
sion, self-steepening effect and higher-order dispersion,
respectively. The parameter n represents the full nonlin-
earity effect and i = V—1.

The model (1) is investigated with the help of the
improved projective Riccati equations method [28,; 29] to
derive distinct exact solutions. The rest of this paper is
organized as follows. In Section 2, we describe the suggested
scheme. Section 3 demonstrates how the FLE is reduced to
a simple form using the traveling wave transformation. In
Section 4, various solution expressions illustrating different
wave structures are extracted. In Section 5, the modulation
instability by means of standard linear stability analysis is
examined. Section 6 displays the remarks and discussion
of the obtained results. Finally, our conclusion is given in
Section 7.

2 Elucidation of scheme

Herein, we present the process of applying the improved
projective Riccati equations method as follows. Consider a
nonlinear evolution equation (NLEE) in the form

) =0, (2)

where u = u(z, t) is an unknown function and P is a poly-
nomial in v and its various partial derivatives.
Based on the traveling wave transformation given by

uw(z, t) = U((&), &=ux— ct, (3)

the NLEE (2) reduces to a nonlinear ordinary differential
equation (NLODE) of the form

QUU, U, U, U",..) =0, (4)

P(’LL, Uy Ugy Uggy Ugty Uty Uggy - -

where prime denotes the derivative with respect to &.

We assume that equation (4) has a solution in the form
of a finite series as

NgE

U(&) = a0+ bof(&) g(&) + > _ [0, () + b 4], (5)

J

I
-

where aj, b, (=0, 1, 2, ..., m) are constants to be deter-
mined. The parameter m is a positive integer which can be
identified by balancing the highest order derivative term
with the nonlinear term in equation (4).

The variables f{¢) and ¢(&) satisfy the the following
improved projective Riccati equations

F(Q) =0A4g*(Q),  g(&) =—Af(S)g(¢) —g 9(¢) (B = Bf(S)),

PO =05 R-BOF-£Q|,  ©

where A, B and R are arbitrary constants and 6 = =+1.
The third equation in the system (6), which gives the rela-
tion between the functions f{¢) and ¢(&), represents the
first integral of the couple ODEs in this system.

The set of equations (6) is found to possess solutions in
the form

_ Rtanh(R¢) _ Rsech(R¢)
MO = i Bran(rg) 9 = A+ Branh(RY)
(7)
which implies 6 = 1, and
(0 = _ Rcoth(R¢) (&) = Resch(RE)

~ A+ Beoth(RE)’ =+ Beon(id)

provided that 6 = —1.
Substituting (5) along with (6) into equation (4) gives a
polynomial in f7 (&) and 7 (¢) g(¢). Then, we equate each

coefficient of f7 (&) and f? (¢)g(¢) in this polynomial to zero
to get a set of algebraic equations for a;, b; Finally, solving
this system of equations, we obtain various exact solutions
of equation (2) according to (7) and (8).

3 Traveling wave reduction of the model

Now, we aim to reduce the complex form of the model (1) to
an NLODE with a view to deriving the optical soliton solu-
tions. Therefore, we assume the traveling wave transforma-
tion of the form

W, 0) = YD), ©)

where (&) accounts for the amplitude of the soliton
while ¢(z, y, t) denotes the phase component. The wave
variable & is given by

&=z —vt, (10)
and the function ¢(z, y, ¢) is introduced as

¢(z,y,t) = —xz + ot + 0, (11)
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where the parameters v, k, @ and 0 represent the soliton
velocity, frequency, wave number and phase constant,
respectively.

Substituting (8) into equation (1) leads to a couple of
equations for real and imaginary parts given, respectively,
as

" + (3ax — 66> )W — (0 + ok + ax® — b )y

+ (e + di)y’ — gy =0, (12)

(a —4ar)y” — (2 + v+ 3ax® — 4bP)W' + dp*y'

—(2nu+ 20+ DAY =0, (13)

where the prime denotes the derivative with respect to &.
The system of equations (12) and (13) is reduced to

by + 63" — (o + axc + bk + (¢ + dic — k) =0,

(14)

with the expression for the velocity of the soliton pre-
sented as

v=—o— 8bK’, (15)

under the constraints

n=1, (16)
a = 4bx, (17)
d—2p—3).=0. (18)

4 Solutions of the model

Now, we embark on deriving the solutions of the perturped
CQ-FLE through implementing the improved projective
Riccati equations method stated in Section 2. The proposed
technique is basically used to handle equation (14) and then
its obtained solutions are plugged into the transformation
(9) so as to extract the optical solitons of the governing
model.

According to the series formula given in (5) and the
balance between the terms " and * in equation (14), this
leads to m = 2. Hence, the general solution form of equation
(14) reads

Y(&) = ao+ bof (&) 9(&) + Y [0, (&) + b #(9)]. (19)

=1

Substituting (19) together with equations (6) into equation
(14) gives rise to an equation having different powers of
f! ¢°. Collecting all the terms with the same power of f' ¢*
together and equating each coefficient to zero, yields a set
of algebraic equations. Solving these equations simultane-
ously leads to the following results.

Set I. If 6 = 1, then the following cases of solutions in
the hyperbolic secant and tangent functions are retrieved.

Case 1.
300(A? — B?)?

bp =2 |5 —
A% (c+ di — k)

ay=a; = ay = b, =0,

by = byRB

24 3
o5 ©= —oac—}—%brc“, R= :i:\/;;c. (20)

Inserting (20) in accompany with (7) into (19) yields

300(A* — B?)

Y(z, t) = 2R
(2,%) R c+dix — x

" Atanh(RE) sech(RE) + Bsech(RE) e
(A + Btanh(R¢))? ’

(21)

where b(A® — B*)(c + dx — Ax) > 0, & = x+ (o + 8bK>)t
and ¢(z,t) = —xz — (om —%bxél)t—i— 0.

Case 2.

3(121(2
bh=b=b=0, a=—-r—n,
T " 10(A - BY)

2a,RB 2(A? — B?)? 30b
G =—F5——5, G== - :
A2 _ B2 A2 ¢+ dx — Ik

219, 3
= gk — = =4/ "k 22
) oK — <o k', R 10° (22)

Plugging (22) along with (7) into (19) brings about

300

_ 2 p2\p2 |
(1) = £2(A° — BB [ - oo

sec h*(R¢E)
(A 4+ Btanh(R¢))?

e, (23)

where b(c + dx — Jx) < 0, & = z + (¢ + 8bx”)t and
oz, 1) = —Kz — (am+%§bm4)t+ 0.

Case 3.

b (10R” + 31
30(A* — B?)

ay = ay = by = b =0, ay = ,

3006

_ 2 oy |
b= £2(4° - B) ¢+ dx — A’

o = —ox — 18bR** — g bi', 40R* — 30R*k* + 9x* = 0.

(24)
Substituting (24) together with (7) into (19) generates
300
Y(z,t) =+ ———
(2.9 c+di — ik

y 10R* +3k>  2(A° — B*) R*sech’(R¢)
15 (A + Btanh(R¢))*

|,
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where b(c + dk — k) < 0, & = z + (o + 8bk”)t and
6
o(z,t) = —kz — <om+ 18b R +5bK4>t+ 0.

Case 4.
bo= b = by =0, ay — 10(?“ o ij_R;,
2= i2(A2f;2 82)2 e+ Z)gb— e C T T % b,
R=+ _I%K' (26)

Putting (26) in addition to (7) into (19) gives us the soliton
solution (23).

Case 5.
bV B — A®
= =0a6=0 b=t 1)
A
/2 42
b = iw7 by = i(A2 _32) _Lb,
A(A” — BY) c+ dk — Jk
219 6
= oK — —— bt =4y /—-x. 2
® ok — — = bic, R K (27)
Plugging (27) and (7) into (19) leads to
30b(A* — B?)
¥(z,t) = +R| ————2
(29 R ¢+ dk — Ak
sech(R¢) [B + Atanh(R¢) + vV B® — A’sech(R¢) o
X ez z, ,
(A + Btanh(R¢&))?
(28)

where b(c + di — Jx) < 0, A> < B?, & = x + (o0 + 8bK*)t
219
and ¢(z,t) = —Kz — (om -— bx4) t+0.

25
Case 6.
b — 0 6y inORB\/BZ —A?
=0, aqpy = ——F—, W= T35 5.
’ CTsavBE a2 AL~ B
byVB® — A? byRB
CEETA O T
306(A% — B*)? 219
b()::l: #, a):—om—2—5blc4,
(¢ + di — k) (29)
R=+ —gK.

Substituting (29) in accompany with (7) into (19) produces
the soliton solution (28).

Case 7.
a2 (20R*A* — 30R?B? — 3A%k?
bU:bIZbQZ()a 00:_2( ) 92\ 2 )7
30(A% — B?)
2a,RB 2(A* — B*)? 300
ar = 2 27 az = + 2 - )
A - B A c+ dk — Jx

o= —ox — 18bR*Kk* — g b, 40R* — 30R*k? + 9kt = 0.
(30)

Inserting (30) along with (7) into (19), we secure

2A2 2 A2 2 BQ?
V(o t) = + 300 {0 R —3A°x* —30B°R

e+ di—x 1542

~2(A” - BY) R tanh(RE) {(A* + B?) tanh(RE) + 24B} |
A*(A + Btanh(RS))® oo

(31)
where b(c + dx — Jx) < 0, & = x + (o + 8bx”)t and
¢(z,t) = —Kz — (om + 18bR*«* +§bl€4> t+0.

Case 8.
by (5R? 4 6x?) VB — A®
a=0a=0, a=-—"—"H3—7, o =t——7—,
30(4° — BY) A
7 12
blzib2RszB 2A b (A - By 300 7
A(A* - B%) ¢+ di — Ak

6 ,
—bk', BR'— 15R** 4+ 18k* = 0.

_ 9 2 2
W= —0oK 2bR;c 3

(32)

Substituting (32) as well as (7) into (19) provides the
soliton solution

Y(z,t) ==+

B 30b 5R? + 6x?
c+ dk — lk 30

N R*VB* — A’sech(RE)[B + Atanh(RE)]
(A + Btanh(R¢))? '

R*(A* — B*)sech®(R¢)

_ : eid)(z,t)7 (33)
(A + Btanh(RE))

b(c+ di — Ax) < 0,A> < B* & =z + (o + 8bi?)t
and ¢(z, 1) = —kz — <O!K+£2)bR2K2 +§bx4)t+ 0.

where

Case 9.
b0 _ by(25R*A* — 30R*B” — 6A%«?)
T 304(4% - BWEB — A2
2b0RBV B* — A® bV B — A*
Gg=t——— =t
A(A* - BY) A
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bRB 306(A? — B?)?
by = 20 5 by =+ 2(—?1
A"—B A% (c+ di — k)
w = —oK — 5bRZ’K2 — g b',  BR'— 15R*k* 4 18k* = 0.

(34)
Substituting (34) together with (7) into (19) creates

300 25A°R* — 6A%k? — 30B*R?
¢+ dx — Ik 3042

Y(z,t) ==+

R*A’V B* — A’ sech(RE)[B + Atanh(R¢)]

+
A’(A 4 Btanh(R¢&))?

R*(A” — B) tanh(R¢) [2AB + (A* + B*) tanh(RE)] |
— e 3 ,
A%(A + Btanh(R¢))?
(35)
where b(c + dx — k) < 0, A> < B & = 2+ (o0 + 8bi’)t
and ¢(z,t) = —Kz — (om + g bRk + g bK4> t+ 0.

Set II. If 6 = —1, then the following cases of solutions in
the hyperbolic cosecant and cotangent functions are
retrieved.

Case 1.
30b(A% — B?)?
=ag=a6=0b=0, bb=42y//—-—FF——"""""—,
ayp = a1 = Qg 2 0 \/ AQ(C T+ de — )Jc)
b RB 24 3
bl :m, w = —“K+%bk4, R:i\/%l{ (36)

Inserting (36) along with (7) into (19) yields

 30p(A* - B

L4 = +2R?
(2,1) R ¢+ di — Ak

" A coth(R&)csch(RE) + Besch(RE) ()
(A + Bcoth(R¢E))

;o (37

where b(A* — B*) (¢ + di — Ax) < 0, & = z+ (a + 8bi®)t
and ¢(z,t) = —xx — <<xrc oA bK4> t+ 0.

25
Case 2.
3(12162
bp=b=b =0, og=—F5—"—,
0 1 2 0 10(A2 — B2)
2a,RB 2(A% — B?)® 30b
a1 = —5 3> ay =+ 3 - P
A - B A c+dk — Ax

219 [ 3
w——om—%bx, R=+ ~ 1o (38)

Plugging (38) in addition to (7) into (19) brings about
Y(z,t) =

300 csch?(RE)

eid)(a:,t)
¢+ dx — Ak (A + Bcoth(R¢))?

+2(A° — BY)R*\/ -

(39)
where b(c+ dk— k) <0, =z+ (0 +8bk®)t and ¢(z,t)=
—kx— (o +32bic ) t4-0.

Case 3.

by (10R? + 3K?)
= = b = b = O7 =
ay = a2 0 1 Qo 30(A2 _ Bg)

9

3006

_ o ooy |
b= 22(4° - ) ¢+ di — A’

40R* — 30R*k> + 9x* = 0.
(40)

w = —akx — 18bR*k? — g b,

Substituting (40) and (7) into (19) generates

300
VY(r,t) =+ ——FF
(1) c+ dx — Ax
1 9 9 2 A2 _ BZ 2 h2 _
OR” + 3k n ( )R esc (f‘f) o), (41)
15 (A + Bceoth(R¢))

where b(c + dx — Jx) < 0, & = z + (o« + 8bk”)t and
6
¢(z,t) = —kx — (om + 18bR*K* + gbk4> t+ 0.

Case 4.
3asK’ 2a,RB
b = b = b = VU, - ) = ’
TR YTl opy "R
2(A* — B?)’® 300 219
ay ==+ ( 3 ) — , o= —oKx — —bx
A c+ dik — Ak 25

R:i,/—l%x. (42)

Putting (42) as well as (7) into (19) gives us the soliton
solution (23).

Case 5.

VA — B
ay=a; = ay =0, b(]:iﬁ7
BV A® — B

blzibQR2—27 bzzi(AQ—BQ) _LbA’
A(A® - BY) ¢+ dk — x

219 6
=—ok———bx', R==%\/—cK 43
@) aK — - i’ £~ (43)
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Plugging (43) along with (7) into (19) results in Case 8.
by (5R? + 6K2)
bA2_32 a = a :0, ay = ————5———,
Y(z,t) = +R —% e "7 3047 - BY)
¢+ di — Ak
A VA — B 4 bRBVA® — B
csch(RE) [B + Acoth(RE) + VAT — B%sch(Rg)} s 0= A T Aoy
X e,
(A + Beoth(RE))? - 300 (48)
by =+(A"— B}/ —————,
(44) ¢+ di — Ax
2 2 - — 9 bR2 2 6 b 4
where  b(c+ dk — k) < 0,A” > B*, ¢ = x + (o0 + 8bx3)t W= Tak =5 bR = Ok,
21 ,
and ¢(z,t) = —xz — (o — 2—5917164)15—1— 6. 5R' — 15R*k* + 18x* = 0.
Case 6 Substituting (48) in accompany with (7) into (19) provides
) the soliton solution
b — 0. 4 6o . izbORBVA2 - B 200
2 = U, Ao = ) 5 1= 2 2 9 ‘“P t) =+ e
5AVA® - B A(A" =B (1) ¢+ dx — Ik
/T 2
o=t VAZE oy hRB R 6 | RVAT = Besch(RE)[B + Acoth(RE)|
A A"—B 30 (A + Bcoth(R¢))®
30b(4° — B%)° 219
by =+ —2(—), o= —ok — — bx', R*(A* — B?) csch?(R¢) ib(n.0)
A (C + di — )LK) 25 P} e, (49)
(A + Bcoth(RE))
6
R=+ —gk- (45)  where  b(c+ di — k) < 0,A* > B & =z + (o + 8bi®)t
_ 9,0 6 4
Substituting (45) in accompany with (7) into (19) produces and ¢(z,t) = —rz — <om ) bR'x" + 5 b )t+ 0
the soliton solution (44).
Case 9.
Case 7. b0 4 WESEAT - 30RB - 64%)
az(20R* A* — 30R*B* — 3A4%K?) 2= = 30A4(A* — BV A? - B? ’
bo =0 =by=0, Ay = — 30(142—32)2 ;
| 2byRBVA’— B’ bWV AT - B
24, RB 2(4% - B?)? 300 BEET A T o
M =—F—s, G==% 2 - PP
A - B A c+dk — Ak
2 92 6 4 A 2 92 4 b — M — :|: M
w:—OCK—].SbRK—gbK, 40R™ — 30R°k* + 9™ = 0. T g 0= A+ dr— Jx)
(46) 9 6 ,
o= —ox — - bR** ——bx', 5R'— 15R*x* + 18k = 0.
Inserting (46) and (7) into (19), we come by 2 5
(50)
Y(z,t) ==+ o 30 Substituting (50) together with (7) into (19) gi ise t
1) = P — ubstituting (50) together wi into gives rise to
20A°R* — 34°k> — 30B° R’ 300 25A°R® — 6A°k* — 30B°R’
X 5 Y(z, t) =44/ — 5
154 ¢+ dk — Ak 304
B 2(A’ — B*) R’ coth(R¢){ (A* + B®) coth(R¢E) + 2AB}}67¢W) N R*A*V A® — B’csch(RE)[B + Acoth(RE))
A2(A + Beoth(RE))? ’ A%(A + Bcoth(R¢))?

(47)

R*(A” — B*) coth(RE) [2AB + (A° + B) coth(RE)] | e
where b(c+dk— k) <0,é=z+ (a+8bx*)t and ¢(z,t)= A*(A + Beoth(R¢))? ©

—KT— (ak+18bR2K2+§bK4>t+9. (51)
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b(c+ dic — Ax) <0, A*> > B? & =z + (o + 8bK?)t
9 6
and ¢(z,t) = —Kz — (om +§bR2K2 +5bx4>t+ 0.

Interestingly it can be noticed that the complex values of the
constant R in some solutions obtained above generate peri-
odic type solutions and then the amplitude function of these
solutions may be complex. However, the complex-valued
amplitude for some of these solutions can be converted into
real value. For example, the periodic solution (23) has the
form

where

2 2 2
lP(x’ t) = iw
R (8K g
) . o
¢+ di — K (AJrthan(‘l/ngf))
(52)

Since B is an arbitrary constant, it can be assumed as
B = iI', where T is a real constant. Thus, solution (52)
becomes

2 A2 l—*?
P (s, t) = LA+ 1)

5
300 (86 e
dx — ’ '
¢+ di — ik (A_Ftan(\l/—gkf))
(53)

Similarly, the periodic solution (28) given by

61> [30b(A° — B?)
Y(z,t)=+— | —— 2
(2,2) 5 ¢+ di — Ik

sec (*/—;?6 vcé) {B + 1A ‘uam(*/—g‘TJ k) £ VB — A sec(@ Kf)]

% 67’,(})(1,0’

(A + B tan(@ Kf)) ’

changes, after taking A = Y, into

i6_;<2 ~306(T* + B%)

(1) = 002 +5)
(2,2) 5 c+ dx — K

sec (f_)zﬁ 1€§> [B — Y tan (@ Kf) + /T2 4 B%sec <@ Kﬁ)} et

3 e )
(T + Btan (@Ké>>

5

X

(55)

where T is a real constant. Consequently, the same tech-
nique can be used to the rest of periodic solutions to
handle a real value for the amplitude of periodic waves.

5 Modulation instability analysis

In this section, the modulation instability of the perturbed
Fokas—Lenells equation (1) is studied by means of the stan-
dard linear stability analysis.

Consider that equation (1) has the perturbed steady-
state solution in the form

w(z, t) = [ VP + Uz, t) |, (56)

where P is the normalized optical power while U(z, t) is a
small perturbation and U < P. The perturbation U(z, t)
is examined by utilizing linear stability analysis. Inserting
equation (56) into equation (1) and linearizing, one can
reach
1 3
z'aa—(t]+ cP(U+U")+ ba—UJr P

am4 ZCL@""L‘ dP—(X

*

N L 0U 20U
—AMn+1)P" — unP o i(A + wnP o =0, (57)

where x denotes the conjugate of the complex function
U(z, t). Assuming that the solution of equation (57) in
the form

U(IL', t) _ ﬁ ei(Kxfﬂt) + 7y efz'(waﬂt), (58)
where K and Q are the normalized wave number and
frequency of perturbation, respectively. Substituting
ansatz (58) into equation (57), we find a couple of equa-
tions in f and y by splitting the coefficients of
exp{i(Kz — Qt)} and exp{—i(Kz — Qt)} presented as

[n(Z+ w)(B+7) + AB)KP" + [bK* + aK®
+(dP —a)K+ cP+Qf+cPy=0
[n(4+ p)(B+7) + Ay]KP" — [bK* — aK®
+(dP —a)K + ¢cP —Qly — cPf = 0. (59)

The system of equations (59) can be written in the matrix
form for the coefficients of  and y. The determinant of this
matrix leads to the dispersion relation in the form

O+ 1 Q+ K+ K+ K - VK =0,  (60)
where the constants 1, %2 and y4 are given as

2 =2{[(n(A+p) +2)P" — (dP — 0)]K + aK’}, (61)

Ay = Z(apn_’_ip?n _ dP"H)(n()»—i-,u) +l> _ AQPQH
+ (dP — w)?, (62)
1 =2{(e— dP)a— bcP + a(n(A+pu) + A)P"}.  (63)

The dispersion relation has the solution given as

Q= [dP -« — aK® — (n(A+ ) + ) P"

i\/b2K6 +2bcPK? 4+ n2(L+ p)’ P K. (64)
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Figure 1. The dispersion relation Q = Q(K) between frequency
Q and wave number K given in (64).
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Figure 2. The dynamical behavior of solution (21) with the
unity value for all parameters except A = 2.
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Figure 3. The dynamical behavior of solution (23) with the
unity value for all parameters except b = —1, A =2, B =i.

This expression determines the steady-state stability that
depends on the the fourth-order dispersion, nonlinear influ-
ence, self-steepening effect, higher-order dispersion and
wave number. It is clearly seen that the value of frequency
Q is real for all values of K and hence the steady state is
stable against small perturbations. Figure 1 shows the
graph of dispersion relation.
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Figure 4. The dynamical behavior of solution (25) with the
unity value for all parameters except b = —1, B = 2.
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Figure 5. The dynamical behavior of solution (28) with the
unity value for all parameters except A = i, B = 2i.

6 Results and discussion

The implemented mathematical tools in terms of the
improved projective Riccati equations have led to abundant
exact solutions for the perturbed FLE model. All derived
solutions are entirely new and different than the ones found
in the literatures. Comparing the results obtained here with
the corresponding results extracted in the previous studies,
it is found that all solutions retrieved in [27] by using the
sine—Gordon equation integration scheme can be deduced
in this work when B = 0. The created traveling wave
solutions include various wave structures such as bright
soliton, combo dark—bright soliton, singular soliton, combo
singular soliton and periodic waves.

To throw light on the dynamical behaviors of cubic—
quartic optical solitons and other waves in polarization-
preserving fibers, the graphical representations for some of
the constructed exact solutions are presented. Wave struc-
tures are displayed in 2D and 3D plots by selecting suitable
values of the model parameters. Figure 2 illustrates the evo-
lution of soliton solution (21), where the wave profile shows
an M-shaped (two-hump) soliton. The graph in Figure 3
demonstrates periodic singular wave of solution (23).
Moreover, Figure 4 presents the plot of solution (25) that
describes the bright soliton wave. In Figure 5, the graph of
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Figure 6. The dynamical behavior of solution (31) with the
unity value for all parameters except b = —1, B = 0.

solution (28) depicts the structure of periodic bright soliton
train. Additionally, it is clear from Figure 6 that the evolu-
tion of solution (31) characterizes the profile of W-shaped
wave (dark-dark soliton).

7 Conclusion

The present work focused on investigating distinct forms of
exact solutions for cubic—quartic Fokas—Lenells equation
with Hamiltonian perturbation terms in polarization-
preserving fibers. The study is carried out with the aid of
the improved projective Riccati equations. The imple-
mented approach enables us to find different wave struc-
tures including bright soliton, combo dark—bright soliton,
singular soliton and combo singular soliton. Besides, the
periodic singular waves are also recovered as a byproduct
of executing solution method. The behaviors of some
derived solutions are illustrated graphically to pave the
way for understanding the physics of the model. Further
to this, the stability of the retrieved solutions have been
diagnosed by utilizing the linear stability analysis. The
modulation instability of the perturbed FLE is discussed
and confirms that all extracted solutions are stable. Overall,
the proposed algorithm is rich in various solutions which are
entirely new and can be exploited in the physical and engi-
neering applications of fiber optics.
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