
- Photonics Research
- Vol. 10, Issue 6, 1332 (2022)
Abstract
1. INTRODUCTION
The demonstration of Ge lasers [1,2] has opened new opportunities towards realizing complementary metal–oxide–semiconductor (CMOS)-compatible light sources on silicon (Si). During the last few years, a great amount of effort has been put into lowering the lasing threshold and increasing the operating temperature of Ge-based lasers for practical applications. Major routes that most researchers have investigated to improve the performance of Ge-based lasers are to employ tensile strain engineering [3–18] and Sn alloying [19–32]. Both approaches can increase the directness of Ge, thereby making the material suitable for high-performance on-chip lasers, which hold the key to monolithic integration of photonic-integrated circuits [33–35].
While material quality also plays a significant role in determining the performance of laser devices [36], it has not been extensively studied how the defects in the lasing gain medium influence the performance of GeSn lasers. Most of the previously reported GeSn lasers used epitaxially grown GeSn layers, which have a significant number of interfacial defects due to the lattice mismatch between the GeSn and Ge buffer layers [31]. Recently, a 10-fold improvement in the lasing threshold of GeSn microdisks was obtained by removing the defective GeSn–Ge interface using a
In this work, we experimentally demonstrate that the reduced defect density in high-quality GeSn-on-insulator (GeSnOI) microdisk lasers can reduce the lasing threshold by
Sign up for Photonics Research TOC. Get the latest issue of Photonics Research delivered right to you!Sign up now
2. SUBSTRATE FABRICATION AND OPTICAL CHARACTERIZATION
Figures 1(a) and 1(b) show cross-sectional TEM images of the as-grown GeSnOS and GeSnOI substrates. In the GeSnOS sample, a 960-nm-thick GeSn epilayer with a Sn content of 8% (atomic fraction) was grown on a 150-mm Si wafer with a 1-μm-thick Ge buffer layer using reduced pressure chemical vapor deposition (RPCVD) at 250°C. The compressive GeSn epilayer becomes relaxed as it grows thicker, which allows for a larger amount of Sn atoms to be incorporated into the lattice. As a result, the GeSn layer at the surface obtains a Sn content of 10.4%. A large plastic relaxation occurs during the GeSn epitaxial growth due to the lattice mismatch between the Ge buffer layer and GeSn epilayer, resulting in a large number of misfit dislocations at the interface between the layers. Misfit dislocations are visible at GeSn–Ge and Ge–Si interfaces that form during growth as a result of the large lattice mismatch between the two layers [Fig. 1(a)]. The highly defective interface will result in enhanced non-radiative recombination, shortening the minority carrier lifetime and degrading the material’s internal quantum efficiency (IQE), in turn increasing the lasing threshold [36,37]. To overcome this issue, the GeSnOI substrate was fabricated using a low-temperature (
Figure 1.(a), (b) Cross-sectional TEM images of (a) GeSnOS and (b) GeSnOI substrates. Scale bar, 500 nm. (c) PL spectra from GeSnOI and GeSnOS substrates. The measurement temperature is 4 K.
To compare the optical emission of the GeSnOI and GeSnOS substrates, low-temperature photoluminescence (PL) measurements were conducted at 4 K. The samples were excited with a 532-nm continuous-wave (CW) laser with a fixed pump power density of
3. DEVICE FABRICATION AND SIMULATIONS
To study the effect of the defective interface on lasing performance, microdisk cavities were fabricated using both the GeSnOI and GeSnOS substrates. The 8-μm-diameter microdisks were patterned by photolithography, followed by
Figure 2.(a) Schematic illustration of the microdisk structure fabrication process. (b) Tilted-view SEM image of GeSnOI microdisk. Scale bar, 2 μm.
To ensure the defective interface is the predominant variable influencing the lasing characteristics of the two samples, other variables should be carefully eliminated. To confirm the effect of the different underlying layers (
Figure 3.(a), (b) Top views of simulated electric field distributions in the (a) GeSnOI and (b) GeSnOS microdisk structures, which achieve high-quality factors of
4. OPTICAL CHARACTERIZATION
Figures 4(a) and 4(b) present the 4 K PL spectra of both GeSnOI and GeSnOS microdisks at different pump powers. A pulsed laser pumping at 1550 nm was used with a pulse width and repetition rate of 5 ns and 1 MHz, respectively. While both microdisks show the emergence of sharp lasing peaks as the pump power is increased, lasing in the GeSnOI microdisk occurs at a much lower pump power density compared to the GeSnOS microdisk. The improved threshold for the GeSnOI microdisk can be also appreciated in Figs. 4(c) and 4(d), which show double-logarithmic (main) and linear (inset) light-in-light-out (L-L) curves of GeSnOI and GeSnOS microdisks, respectively. Clear threshold behaviors of both GeSnOI and GeSnOS microdisks were observed from the non-linear S-shaped behavior in the log–log plots, which is a hallmark of lasing action. The lasing thresholds for GeSnOI and GeSnOS are
Figure 4.(a), (b) PL spectra from (a) GeSnOI and (b) GeSnOS microdisks at different pump powers. (c), (d) Double-logarithmic L-L curves for (c) GeSnOI and (d) GeSnOS microdisks. Insets: linear L-L curves. (e), (f) FWHMs for (e) GeSnOI and (f) GeSnOS microdisks at different pump powers.
5. CONCLUSION
In summary, we have experimentally demonstrated that removing the Ge–GeSn defective interface in GeSn can drastically improve the lasing performance. By using a low-temperature direct bonding technique and CMP process, we obtained a high-quality GeSnOI substrate with the global removal of the defective interfaces introduced during the epitaxial growth. We confirmed that the defective interfaces were successfully removed by the CMP process by using cross-sectional TEM of GeSnOI and GeSnOS substrates. The removal of the defective interface resulted in an increased PL intensity by
Acknowledgment
Acknowledgment. The authors thank Nanyang NanoFabrication Centre (N2FC) for assistance in the GeSn substrates and microdisks fabrication.
References
[1] J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, J. Michel. Ge-on-Si laser operating at room temperature. Opt. Lett., 35, 679-681(2010).
[2] R. Koerner, M. Oehme, M. Gollhofer, M. Schmid, K. Kostecki, S. Bechler, D. Widmann, E. Kasper, J. Schulze. Electrically pumped lasing from Ge Fabry-Perot resonators on Si. Opt. Express, 23, 14815-14822(2015).
[3] D. Nam, D. Sukhdeo, A. Roy, K. Balram, S.-L. Cheng, K. C.-Y. Huang, Z. Yuan, M. Brongersma, Y. Nishi, D. Miller, K. Saraswat. Strained germanium thin film membrane on silicon substrate for optoelectronics. Opt. Express, 19, 25866-25872(2011).
[4] A. Elbaz, M. Kurdi, A. Aassime, S. Sauvage, X. Checoury, I. Sagnes, C. Baudot, F. Boeuf, P. Boucaud. Germanium microlasers on metallic pedestals. APL Photon., 3, 106102(2018).
[5] D. Nam, D. Sukhdeo, J.-H. Kang, J. Petykiewicz, J. H. Lee, W. Jung, J. Vučković, M. Brongersma, K. Saraswat. Strain-induced pseudoheterostructure nanowires confining carriers at room temperature with nanoscale-tunable band profiles. Nano Lett., 13, 3118-3123(2013).
[6] K. Guilloy, N. Pauc, A. Gassenq, Y.-M. Niquet, J.-M. Escalante, I. Duchemin, S. Tardif, G. O. Dias, D. Rouchon, J. Widiez, J.-M. Hartmann, R. Geiger, T. Zabel, H. Sigg, J. Faist, A. Chelnokov, V. Reboud. Germanium under high tensile stress: nonlinear dependence of direct band gap vs strain. ACS Photon., 3, 1907-1911(2016).
[7] J. Petykiewicz, D. Nam, D. Sukhdeo, S. Gupta, S. Buckley, A. Y. Piggott, J. Vučković, K. Saraswat. Direct bandgap light emission from strained germanium nanowires coupled with high-
[8] D. A. Smith, V. C. Holmberg, B. A. Korgel. Flexible germanium nanowires: ideal strength, room temperature plasticity, and bendable semiconductor fabric. ACS Nano, 4, 2356(2010).
[9] D. S. Sukhdeo, D. Nam, J.-H. Kang, M. L. Brongersma, K. C. Saraswat. Direct bandgap germanium-on-silicon inferred from 5.7% ⟨100⟩ uniaxial tensile strain. Photon. Res., 2, A8-A13(2014).
[10] Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. C. Luan, L. C. Kimerling. Strain-induced band gap shrinkage in Ge grown on Si substrate. Appl. Phys. Lett., 82, 2044-2046(2003).
[11] Z. Qi, H. Sun, M. Luo, Y. Jung, D. Nam. Strained germanium nanowire optoelectronic devices for photonic-integrated circuits. J. Phys. Condens. Matter, 30, 334004(2018).
[12] A. Ghrib, M. El Kurdi, M. de Kersauson, M. Prost, S. Sauvage, X. Checoury, G. Beaudoin, I. Sagnes, P. Boucaud. Tensile-strained germanium microdisks. Appl. Phys. Lett., 102, 221112(2013).
[13] Y. Jung, Y. Kim, D. Burt, H.-J. Joo, D.-H. Kang, M. Luo, M. Chen, L. Zhang, C. S. Tan, D. Nam. Biaxially strained germanium crossbeam with a high-quality optical cavity for on-chip laser applications. Opt. Express, 29, 14174-14181(2021).
[14] M. de Kersauson, M. El Kurdi, S. David, X. Checoury, G. Fishman, S. Sauvage, R. Jakomin, G. Beaudoin, I. Sagnes, P. Boucaud. Optical gain in single tensile-strained germanium photonic wire. Opt. Express, 19, 17925-17934(2011).
[15] S. Bao, D. Kim, C. Onwukaeme, S. Gupta, K. Saraswat, K. H. Lee, Y. Kim, D. Min, Y. Jung, H. Qiu, H. Wang, E. A. Fitzgerald, C. S. Tan, D. Nam. Low-threshold optically pumped lasing in highly strained germanium nanowires. Nat. Commun., 8, 1845(2017).
[16] M. J. Süess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, H. Sigg. Analysis of enhanced light emission from highly strained germanium microbridges. Nat. Photonics, 7, 466-472(2013).
[17] D. Nam, D. S. Sukhdeo, S. Gupta, J. H. Kang, M. L. Brongersma, K. C. Saraswat. Study of carrier statistics in uniaxially strained Ge for a low-threshold Ge laser. IEEE J. Sel. Top. Quantum Electron., 20, 1500107(2014).
[18] F. T. A. Pilon, A. Lyasota, Y.-M. Niquet, V. Reboud, V. Calvo, N. Pauc, J. Widiez, C. Bonzon, J. M. Hartmann, A. Chelnokov, J. Faist, H. Sigg. Lasing in strained germanium microbridges. Nat. Commun., 10, 2724(2019).
[19] Q. M. Thai, N. Pauc, J. Aubin, M. Bertrand, J. Chrétien, V. Delaye, A. Chelnokov, J.-M. Hartmann, V. Reboud, V. Calvo. GeSn heterostructure micro-disk laser operating at 230 K. Opt. Express, 26, 32500-32508(2018).
[20] J. Chrétien, N. Pauc, F. A. Pilon, M. Bertrand, Q.-M. Thai, L. Casiez, N. Bernier, H. Dansas, P. Gergaud, E. Delamadeleine, R. Khazaka, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, J.-M. Hartmann, V. Calvo. GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain. ACS Photon., 6, 2462-2469(2019).
[21] D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, D. Buca. Optically pumped GeSn microdisk lasers on Si. ACS Photon., 3, 1279-1285(2016).
[22] Y. Kim, S. Assali, D. Burt, Y. Jung, H.-J. Joo, M. Chen, Z. Ikonic, O. Moutanabbir, D. Nam. Enhanced GeSn microdisk lasers directly released on Si. Adv. Opt. Mater., 10, 2101213(2021).
[23] A. Elbaz, D. Buca, N. von den Driesch, K. Pantzas, G. Patriarche, N. Zerounian, E. Herth, X. Checoury, S. Sauvage, I. Sagnes, A. Foti, R. Ossikovski, J.-M. Hartmann, F. Boeuf, Z. Ikonic, P. Boucaud, D. Grützmacher, M. El Kurdi. Ultra-low-threshold continuous-wave and pulsed lasing in tensile-strained GeSn alloys. Nat. Photonics, 14, 375-382(2020).
[24] A. Elbaz, R. Arefin, E. Sakat, B. Wang, E. Herth, G. Patriarche, A. Foti, R. Ossikovski, S. Sauvage, X. Checoury, K. Pantzas, I. Sagnes, J. Chrétien, L. Casiez, M. Bertrand, V. Calvo, N. Pauc, A. Chelnokov, P. Boucaud, F. Boeuf, V. Reboud, J.-M. Hartmann, M. El Kurdi. Reduced lasing thresholds in GeSn microdisk cavities with defect management of the optically active region. ACS Photon., 7, 2713-2722(2020).
[25] H. Joo, Y. Kim, D. Burt, Y. Jung, L. Zhang, M. Chen, S. J. Parluhutan, D.-H. Kang, C. Lee, S. Assali, Z. Ikonic, O. Moutanabbir, Y.-H. Cho, C. S. Tan, D. Nam. 1D photonic crystal direct bandgap GeSn-on-insulator laser. Appl. Phys. Lett., 119, 201101(2021).
[26] S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, D. Grützmacher. Lasing in direct-bandgap GeSn alloy grown on Si. Nat. Photonics, 9, 88-92(2015).
[27] Y. Zhou, W. Dou, W. Du, S. Ojo, H. Tran, S. A. Ghetmiri, J. Liu, G. Sun, R. Soref, J. Margetis, J. Tolle, B. Li, Z. Chen, M. Mortazavi, S.-Q. Yu. Optically pumped GeSn lasers operating at 270 K with broad waveguide structures on Si. ACS Photon., 6, 1434-1441(2019).
[28] J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, S.-Q. Yu. Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperatures up to 180 K. ACS Photon., 5, 827-833(2018).
[29] V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, V. Calvo. Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K. Appl. Phys. Lett., 111, 092101(2017).
[30] D. Sukhdeo, Y. Kim, S. Gupta, K. Saraswat, B. Dutt, D. Nam. Theoretical modeling for the interaction of tin alloying with n-type doping and tensile strain for GeSn lasers. IEEE Electron Device Lett., 37, 1307-1310(2016).
[31] R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, J. S. Harris. Increased sminescence of strain-reduced, high-Sn composition
[32] D. Burt, H.-J. Joo, Y. Jung, Y. Kim, Y.-C. Huang, D. Nam. Strain-relaxed GeSn-on-insulator (GeSnOI) microdisks. Opt. Express, 29, 28959-28967(2021).
[33] Z. Zhou, B. Yin, J. Michel. On-chip light sources for silicon photonics. Light Sci. Appl., 4, e358(2015).
[34] O. Moutanabbir, S. Assali, X. Gong, E. O’Reilly, C. A. Broderick, B. Marzban, J. Witzens, W. Du, S.-Q. Yu, A. Chelnokov, D. Buca, D. Nam. Monolithic infrared silicon photonics: the rise of (Si)GeSn semiconductors. Appl. Phys. Lett., 118, 110502(2021).
[35] R. Soref. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron., 12, 1678-1687(2006).
[36] D. S. Sukhdeo, S. Gupta, K. C. Saraswat, B. Dutt, D. Nam. Impact of minority carrier lifetime on the performance of strained germanium light sources. Opt. Commun., 364, 233-237(2016).
[37] D. Nam, J.-H. Kang, M. L. Brongersma, K. C. Saraswat. Observation of improved minority carrier lifetimes in high-quality Ge-on-insulator using time-resolved photoluminescence. Opt. Lett., 39, 6205-6208(2014).
[38] G. Y. Chong, C. S. Tan. Low temperature PE-TEOS oxide bonding assisted by a thin layer of
[39] D. Lei, K. H. Lee, S. Bao, W. Wang, B. Wang, X. Gong, C. S. Tan, Y.-C. Yeo. GeSn-on-insulator substrate formed by direct wafer bonding. Appl. Phys. Lett., 109, 022106(2016).
[40] Q. Zhang, Y. Liu, G. Han, Y. Shao, X. Gao, C. Zhang, J. Zhang, Y. Hao. Theoretical analysis of performance enhancement in GeSn/SiGeSn light-emitting diode enabled by Si3N4 liner stressor technique. Appl. Opt., 55, 9668-9674(2016).
[41] N. Uchida, T. Maeda, R. R. Lieten, S. Okajima, Y. Ohishi, R. Takase, M. Ishimaru, J.-P. Locquet. Carrier and heat transport properties of polycrystalline GeSn films on SiO2. Appl. Phys. Lett., 107, 232105(2015).

Set citation alerts for the article
Please enter your email address