• Photonics Research
  • Vol. 8, Issue 4, 577 (2020)
Xiu-Yan Fu1, Zhao-Di Chen1, Dong-Dong Han1、3、*, Yong-Lai Zhang1、4、*, Hong Xia1, and Hong-Bo Sun2
Author Affiliations
  • 1State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
  • 2State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
  • 3e-mail: handongdong@jlu.edu.cn
  • 4e-mail: yonglaizhang@jlu.edu.cn
  • show less
    DOI: 10.1364/PRJ.382401 Cite this Article Set citation alerts
    Xiu-Yan Fu, Zhao-Di Chen, Dong-Dong Han, Yong-Lai Zhang, Hong Xia, Hong-Bo Sun. Laser fabrication of graphene-based supercapacitors[J]. Photonics Research, 2020, 8(4): 577 Copy Citation Text show less
    References

    [1] J. Wu, H. Wang, Z. Su, M. Zhang, X. Hu, Y. Wang, Z. Wang, B. Zhong, W. Zhou, J. Liu, S. G. Xing. Highly flexible and sensitive wearable E-skin based on graphite nanoplatelet and polyurethane nanocomposite films in mass industry production available. ACS Appl. Mater. Interfaces, 9, 38745-38754(2017).

    [2] Y. Liu, M. Pharr, G. A. Salvatore. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano, 11, 9614-9635(2017).

    [3] S. Wang, J. Xu, W. Wang, G. J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S. K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, Z. Bao. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 555, 83-88(2018).

    [4] J. N. Wang, Y. Q. Liu, Y. L. Zhang, J. Feng, H. Wang, Y. H. Yu, H. B. Sun. Wearable superhydrophobic elastomer skin with switchable wettability. Adv. Funct. Mater., 28, 1800625(2018).

    [5] J. Wu, Z. Ma, Z. Hao, J. T. Zhang, P. Sun, M. Zhang, Y. Liu, Y. Cheng, Y. Li, B. Zhong, T. Zhang, L. Xia, W. Yao, X. Huang, H. Wang, H. Liu, F. Yan, C. E. Hsu, G. Xing. Sheath-core fiber strain sensors driven by in-situ crack and elastic effects in graphite nanoplate composites. ACS Appl. Nano Mater., 2, 750-759(2019).

    [6] S. Yao, P. Swetha, Y. Zhu. “Nanomaterial-enabled wearable sensors for healthcare. Adv. Healthcare Mater., 7, 1700889(2018).

    [7] S. Choi, S. I. Han, D. Jung, H. J. Hwang, C. Lim, S. Bae, O. K. Park, C. M. Tschabrunn, M. Lee, S. Y. Bae, J. W. Yu, J. H. Ryu, S. W. Lee, K. Park, P. M. Kang, W. B. Lee, R. Nezafat, T. Hyeon, D. H. Kim. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol., 13, 1048-1056(2018).

    [8] Y. Yang, W. Gao. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev., 48, 1465-1491(2019).

    [9] M. D. Dickey. Stretchable and soft electronics using liquid metals. Adv. Mater., 29, 1606425(2017).

    [10] D. Wang, Y. Zhang, X. Lu, Z. Ma, C. Xie, Z. Zheng. Chemical formation of soft metal electrodes for flexible and wearable electronics. Chem. Soc. Rev., 47, 4611-4641(2018).

    [11] R. Huang, X. Zhu. Electrostatic actuating bendable flat electrode for micro electrochemical machining. Nanotechnol. Precis. Eng., 1, 133-137(2018).

    [12] M. Zhang, H. Wang, Z. Su, C. Tian, J. T. Zhang, Y. Wang, F. Yan, Z. Mai, G. Xing. Enhanced thermal conductivity and lower density composites with brick-wall microstructure based on highly oriented graphite nanoplatelet: towards manufacturable cooling substrates for high power density electronic devices. Nanotechnology, 30, 245204(2019).

    [13] Z. Lu, G. Zhou, M. Song, D. Wang, P. Huo, W. Fan, H. Dong, H. Tang, F. Yan, G. Xing. Magnetic functional heterojunction reactors with 3D specific recognition for selective photocatalysis and synergistic photodegradation in binary antibiotic solutions. J. Mater. Chem. A, 7, 13986-14000(2019).

    [14] Z. Lu, F. He, C. Y. Hsieh, X. Wu, M. Song, X. Liu, Y. Liu, S. Yuan, H. Dong, S. Han, P. Du, G. Xing. Magnetic hierarchical photocatalytic nanoreactors: toward highly selective Cd2+ removal with secondary pollution free tetracycline degradation. ACS Appl. Nano Mater., 2, 1664-1674(2019).

    [15] B. Han, Y. L. Zhang, L. Zhu, Y. Li, Z. C. Ma, Y. Q. Liu, X. L. Zhang, X. W. Cao, Q. D. Chen, C. W. Qiu, H. B. Sun. Plasmonic-assisted graphene oxide artificial muscles. Adv. Mater., 31, 245204(2019).

    [16] D. Yin, N. R. Jiang, Y. F. Liu, X. L. Zhang, A. W. Li, J. Feng, H. B. Sun. Mechanically robust stretchable organic optoelectronic devices built using a simple and universal stencil-pattern transferring technology. Light Sci. Appl., 7, 35(2018).

    [17] Y. L. Zhang, J. N. Ma, S. Liu, D. D. Han, Y. Q. Liu, Z. D. Chen, J. W. Mao, H. B. Sun. A “Yin”-“Yang” complementarity strategy for design and fabrication of dual-responsive bimorph actuators. Nano Energy, 68, 104302(2020).

    [18] Z. Liu, H. Li, M. Zhu, Y. Huang, Z. Tang, Z. Pei, Z. Wang, Z. Shi, J. Liu, Y. Huang, C. Zhi. Towards wearable electronic devices: a quasi-solid-state aqueous lithium-ion battery with outstanding stability, flexibility, safety and breathability. Nano Energy, 44, 164-173(2018).

    [19] Y. Huang, W. S. Ip, Y. Y. Lau, J. Sun, J. Zeng, N. S. S. Yeung, W. S. Ng, H. Li, Z. Pei, Q. Xue, Y. Wang, J. Yu, H. Hu, C. Zhi. Weavable, conductive yarn-based NiCo//Zn textile battery with high energy density and rate capability. ACS Nano, 11, 8953-8961(2017).

    [20] H. Li, C. Han, Y. Huang, Y. Huang, M. Zhu, Z. Pei, Q. Xue, Z. Wang, Z. Liu, Z. Tang, Y. Wang, F. Kang, B. Li, C. Zhi. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci., 11, 941-951(2018).

    [21] S. Yun, Y. Qin, A. R. Uhl, N. Vlachopoulos, M. Yin, D. Li, X. Han, A. Hagfeldt. New-generation integrated devices based on dye-sensitized and perovskite solar cells. Energy Environ. Sci., 11, 476-526(2018).

    [22] L. Ma, W. Zhang, L. Wang, Y. Hu, G. Zhu, Y. Wang, R. Chen, T. Chen, Z. Tie, J. Liu, Z. Jin. Strong capillarity, chemisorption, and electrocatalytic capability of crisscrossed nanostraws enabled flexible, high-rate, and long-cycling lithium sulfur batteries. ACS Nano, 12, 4868-4876(2018).

    [23] H. Hou, Q. Xu, Y. Pang, L. Li, J. Wang, C. Zhang, C. Sun. Efficient storing energy harvested by triboelectric nanogenerators using a safe and durable all-solid-state sodium-ion battery. Adv. Sci., 4, 1700072(2017).

    [24] H. Long, W. Zeng, H. Wang, M. Qian, Y. Liang, Z. Wang. Self-assembled biomolecular 1D nanostructures for aqueous sodium-ion battery. Adv. Sci., 5, 1700634(2018).

    [25] W. S. B. Dwandaru, L. D. Parwati, R. I. Wisnuwijaya. Formation of graphene oxide from carbon rods of zinc-carbon battery wastes by audiosonic sonication assisted by commercial detergent. Nanotechnol. Precis. Eng., 2, 89-94(2018).

    [26] R. You, Y. Q. Liu, Y. L. Hao, D. D. Han, Y. L. Zhang, Z. You. Laser fabrication of graphene-based flexible electronics. Adv. Mater., 1901981(2019).

    [27] C. Wang, C. Wang, Z. Huang, S. Xu. Materials and structures toward soft electronics. Adv. Mater., 30, 1801368(2018).

    [28] X. Pu, W. Hu, Z. L. Wang. Toward wearable self-charging power systems: the integration of energy-harvesting and storage devices. Small, 14, 1702817(2018).

    [29] Y. Ko, M. Kwon, W. K. Bae, B. Lee, S. W. Lee, J. Cho. Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nat. Commun., 8, 536(2017).

    [30] J. Lao, P. Sun, F. Liu, X. Zhang, C. Zhao, W. Mai, T. Guo, G. Xiao, J. Albert. In situ plasmonic optical fiber detection of the state of charge of supercapacitors for renewable energy storage. Light Sci. Appl., 7, 34(2018).

    [31] Z. Wang, H. Wang, Z. Hao, Z. Ma, H. Liu, M. Zhang, Y. Cheng, J. Wu, B. Zhong, L. Xia, W. Yao, W. Zhou, T. Zhang, P. Sun, S. G. Xing. Tailoring highly flexible hybrid supercapacitors developed by graphite nanoplatelets-based film: toward integrated wearable energy platform building blocks. ACS Appl. Energy Mater., 1, 5336-5346(2018).

    [32] D. P. Dubal, N. R. Chodankar, D.-H. Kim, P. Gomez-Romero. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev., 47, 2065-2129(2018).

    [33] Y. Wang, W. Lai, N. Wang, Z. Jiang, X. Wang, P. Zou, Z. Lin, H. J. Fan, F. Kang, C.-P. Wong, C. Yang. A reduced graphene oxide/mixed-valence manganese oxide composite electrode for tailorable and surface mountable supercapacitors with high capacitance and super-long life. Energy Environ. Sci., 10, 941-949(2017).

    [34] N. A. Kyeremateng, T. Brousse, D. Pech. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol., 12, 7-15(2017).

    [35] Q. Jiang, C. Wu, Z. Wang, A. C. Wang, J.-H. He, Z. L. Wang, H. N. Alshareef. MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit. Nano Energy, 45, 266-272(2018).

    [36] W. Raza, F. Ali, N. Raza, Y. Luo, K.-H. Kim, J. Yang, S. Kumar, A. Mehmood, E. E. Kwon. Recent advancements in supercapacitor technology. Nano Energy, 52, 441-473(2018).

    [37] C. Zhang, M. P. Kremer, A. Seral-Ascaso, S. H. Park, N. McEvoy, B. Anasori, Y. Gogotsi, V. Nicolosi. Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv. Funct. Mater., 28, 1705506(2018).

    [38] Y. Yang, Q. Huang, L. Niu, D. Wang, C. Yan, Y. She, Z. Zheng. Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics. Adv. Mater., 29, 1606679(2017).

    [39] P. Li, Z. Jin, L. Peng, F. Zhao, D. Xiao, Y. Jin, G. Yu. Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels. Adv. Mater., 30, 1800124(2018).

    [40] C. Zhang, B. Anasori, A. Seral-Ascaso, S. H. Park, N. McEvoy, A. Shmeliov, G. S. Duesberg, J. N. Coleman, Y. Gogotsi, V. Nicolosi. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater., 29, 1702678(2017).

    [41] J. Xu, Y. Sun, M. Lu, L. Wang, J. Zhang, X. Liu. One-step electrodeposition fabrication of Ni3S2 nanosheet arrays on Ni foam as an advanced electrode for asymmetric supercapacitors. Sci. China Mater., 62, 699-710(2019).

    [42] X. Fu, Z. Li, L. Xu, M. Liao, H. Sun, S. Xie, X. Sun, B. Wang, H. Peng. Amphiphilic core-sheath structured composite fiber for comprehensively performed supercapacitor. Sci. China Mater., 62, 955-964(2019).

    [43] P. Kang, K. H. Kim, H. G. Park, S. Nam. Mechanically reconfigurable architectured graphene for tunable plasmonic resonances. Light Sci. Appl., 7, 17(2018).

    [44] B. Zeng, Z. Huang, A. Singh, Y. Yao, A. K. Azad, A. D. Mohite, A. J. Taylor, D. R. Smith, H. T. Chen. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light Sci. Appl., 7, 51(2018).

    [45] X. Y. Zhang, S. H. Sun, X. J. Sun, Y. R. Zhao, L. Chen, Y. Yang, W. Lu, D. B. Li. Plasma-induced, nitrogen-doped graphene-based aerogels for high-performance supercapacitors. Light Sci. Appl., 5, e16130(2016).

    [46] Y. Q. Liu, Z. D. Chen, J. W. Mao, D. D. Han, X. Sun. Laser fabrication of graphene-based electronic skin. Front. Chem., 7, 461(2019).

    [47] W. H. Wang, R. X. Du, X. T. Guo, J. Jiang, W. W. Zhao, Z. H. Ni, X. R. Wang, Y. M. You, Z. H. Ni. Interfacial amplification for graphene-based position-sensitive-detectors. Light Sci. Appl., 6, e17113(2017).

    [48] Y. L. Shao, M. F. El-Kady, L. J. Wang, Q. H. Zhang, Y. G. Li, H. Z. Wang, M. F. Mousavi, R. B. Kaner. Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev., 44, 3639-3665(2015).

    [49] W. K. Chee, H. N. Lim, Z. Zainal, N. M. Huang, I. Harrison, Y. Andou. Flexible graphene-based supercapacitors: a review. J. Phys. Chem. C, 120, 4153-4172(2016).

    [50] G. P. Xiong, C. Z. Meng, R. G. Reifenberger, P. P. Irazoqui, T. S. Fisher. A review of graphene-based electrochemical microsupercapacitors. Electroanalysis, 26, 30-51(2014).

    [51] Y. L. Zhang, L. Guo, H. Xia, Q. D. Chen, J. Feng, H. B. Sun. Photoreduction of graphene oxides: methods, properties, and applications. Adv. Opt. Mater., 2, 10-28(2014).

    [52] L. Huang, Y. Liu, L. C. Ji, Y. Q. Xie, T. Wang, W. Z. Shi. Pulsed laser assisted reduction of graphene oxide. Carbon, 49, 2431-2436(2011).

    [53] H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang, J. W. Choi. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett., 11, 2472-2477(2011).

    [54] R. Ye, D. K. James, J. M. Tour. Laser-induced graphene: from discovery to translation. Adv. Mater., 31, 180362(2019).

    [55] Y. L. Zhang, Y. Tian, H. Wang, Z. C. Ma, D. D. Han, L. G. Niu, Q. D. Chen, H. B. Sun. Dual-3D femtosecond laser nanofabrication enables dynamic actuation. ACS Nano, 13, 4041-4048(2019).

    [56] H. B. Jiang, Y. L. Zhang, D. D. Han, H. Xia, J. Feng, Q. D. Chen, Z. R. Hong, H. B. Sun. Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference. Adv. Funct. Mater., 24, 4595-4602(2014).

    [57] X. Zang, C. Shen, Y. Chu, B. Li, M. Wei, J. Zhong, M. Sanghadasa, L. Lin. Laser-induced molybdenum carbide-graphene composites for 3D foldable paper electronics. Adv. Mater., 30, 1800062(2018).

    [58] L. Guo, Y. L. Zhang, D. D. Han, H. B. Jiang, D. Wang, X. B. Li, H. Xia, J. Feng, Q. D. Chen, H. B. Sun. Laser-mediated programmable N doping and simultaneous reduction of graphene oxides. Adv. Opt. Mater., 2, 120-125(2014).

    [59] J. Ye, H. Tan, S. Wu, K. Ni, F. Pan, J. Liu, Z. Tao, Y. Qu, H. Ji, P. Simon, Y. Zhu. Direct laser writing of graphene made from chemical vapor deposition for flexible, integratable micro-supercapacitors with ultrahigh power output. Adv. Mater., 30, 1801384(2018).

    [60] A. Lamberti, F. Clerici, M. Fontana, L. Scaltrito. A highly stretchable supercapacitor using laser-induced graphene electrodes onto elastomeric substrate. Adv. Energy Mater., 6, 1600050(2016).

    [61] D. Shen, G. Zou, L. Liu, W. Zhao, A. Wu, W. W. Duley, Y. N. Zhou. Scalable high-performance ultraminiature graphene micro-supercapacitors by a hybrid technique combining direct writing and controllable microdroplet transfer. ACS Appl. Mater. Interfaces, 10, 5404-5412(2018).

    [62] Y. Wang, Y. Song, Y. Xia. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev., 45, 5925-5950(2016).

    [63] P. Simon, Y. Gogotsi, B. Dunn. Where do batteries end and supercapacitors begin?. Science, 343, 1210-1211(2014).

    [64] X. L. Chen, R. Paul, L. M. Dai. Carbon-based supercapacitors for efficient energy storage. Natl. Sci. Rev., 4, 453-489(2017).

    [65] Y. L. Zhang, Y. Q. Liu, D. D. Han, J. N. Ma, D. Wang, X. B. Li, H. B. Sun. Quantum-confined-superfluidics-enabled moisture actuation based on unilaterally structured graphene oxide papers. Adv. Mater., 31, 1901585(2019).

    [66] R. You, D. D. Han, F. Liu, Y. L. Zhang, G. Lu. Fabrication of flexible room-temperature NO2 sensors by direct laser writing of In2O3 and graphene oxide composites. Sens. Actuators B, 277, 114-120(2018).

    [67] B. Senyuk, N. Behabtu, A. Martinez, T. Lee, D. E. Tsentalovich, G. Ceriotti, J. M. Tour, M. Pasquali, I. I. Smalyukh. Three-dimensional patterning of solid microstructures through laser reduction of colloidal graphene oxide in liquid-crystalline dispersions. Nat. Commun., 6, 7157(2015).

    [68] D. D. Han, Y. L. Zhang, Y. Liu, Y. Q. Liu, H. B. Jiang, B. Han, X. Y. Fu, H. Ding, H. L. Xu, H. B. Sun. Bioinspired graphene actuators prepared by unilateral UV irradiation of graphene oxide papers. Adv. Funct. Mater., 25, 4548-4557(2015).

    [69] D. D. Han, Y. Q. Liu, J. N. Ma, J. W. Mao, Z. D. Chen, Y. L. Zhang, H. B. Sun. Biomimetic graphene actuators enabled by multiresponse graphene oxide paper with pretailored reduction gradient. Adv. Mater. Technol., 3, 1800258(2018).

    [70] A. Chaichi, Y. Wang, M. R. Gartia. Substrate engineered interconnected graphene electrodes with ultrahigh energy and power densities for energy storage applications. ACS Appl. Mater. Interfaces, 10, 21235-21245(2018).

    [71] D. D. Han, Y. L. Zhang, H. B. Jiang, H. Xia, J. Feng, Q. D. Chen, H. L. Xu, H. B. Sun. Moisture-responsive graphene paper prepared by self-controlled photoreduction. Adv. Mater., 27, 332-338(2015).

    [72] D. D. Han, Y. L. Zhang, J. N. Ma, Y. Liu, J. W. Mao, C. H. Han, K. Jiang, H. R. Zhao, T. Zhang, H. L. Xu, H. B. Sun. Sunlight-reduced graphene oxides as sensitive moisture sensors for smart device design. Adv. Mater. Technol., 2, 1700045(2017).

    [73] V. A. Smirnov, A. A. Arbuzov, Y. M. Shul’ga, S. A. Baskakov, V. M. Martynenko, V. E. Muradyan, E. I. Kresova. Photoreduction of graphite oxide. High Energy Chem., 45, 57-61(2011).

    [74] H. B. Jiang, B. Zhao, Y. Liu, S. Y. Li, J. Liu, Y. Y. Song, D. D. Wang, W. Xin, L. Q. Ren. Review of photoreduction and synchronous patterning of graphene oxide toward advanced applications. J. Mater. Sci., 55, 480-497(2020).

    [75] R. Arul, R. N. Oosterbeek, J. Robertson, G. Y. Xu, J. Y. Jin, M. C. Simpson. The mechanism of direct laser writing of graphene features into graphene oxide films involves photoreduction and thermally assisted structural rearrangement. Carbon, 99, 423-431(2016).

    [76] V. A. Smirnov, N. N. Denisov, V. G. Plotnikov, M. V. Alfimov. Photochemical processes in graphene oxide films. High Energy Chem., 50, 51-59(2016).

    [77] Y. Q. Liu, J. W. Mao, Z. D. Chen, D. D. Han, Z. Z. Jiao, J. N. Ma, H. B. Jiang, H. Yang. Three-dimensional micropatterning of graphene by femtosecond laser direct writing technology. Opt. Lett., 45, 113-116(2020).

    [78] Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen, H. B. Sun, F. S. Xiao. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today, 5, 15-20(2010).

    [79] D. D. Han, Y. L. Zhang, J. N. Ma, Y. Q. Liu, B. Han, H. B. Sun. Light-mediated manufacture and manipulation of actuators. Adv. Mater., 28, 8328-8343(2016).

    [80] H. B. Jiang, Y. Liu, J. Liu, S. Y. Li, Y. Y. Song, D. D. Han, L. Q. Ran. Moisture-responsive graphene actuators prepared by two-beam laser interference of graphene oxide paper. Front. Chem., 7, 464(2019).

    [81] C. Ogata, R. Kurogi, K. Awaya, K. Hatakeyama, T. Taniguchi, M. Koinuma, Y. Matsumoto. All-graphene oxide flexible solid-state supercapacitors with enhanced electrochemical performance. ACS Appl. Mater. Interfaces, 9, 26151-26160(2017).

    [82] S. Wang, Z.-S. Wu, S. Zheng, F. Zhou, C. Sun, H. M. Cheng, X. Bao. Scalable fabrication of photochemically reduced graphene-based monolithic micro-supercapacitors with superior energy and power densities. ACS Nano, 11, 4283-4291(2017).

    [83] V. Strauss, K. Marsh, M. D. Kowal, M. El-Kady, R. B. Kaner. A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv. Mater., 30, 1704449(2018).

    [84] V. Strauss, M. Anderson, C. Wang, A. Borenstein, R. B. Kaner. Carbon nanodots as feedstock for a uniform hematite-graphene nanocomposite. Small, 14, 1803656(2018).

    [85] L. B. Xing, S. F. Hou, J. Zhou, S. Li, T. Zhu, Z. Li, W. Si, S. Zhuo. UV-assisted photoreduction of graphene oxide into hydrogels: high-rate capacitive performance in supercapacitor. J. Phys. Chem. C, 118, 25924-25930(2014).

    [86] H. Huang, C. Lei, G. Luo, G. Li, X. Liang, S. Tang, Y. Du. UV-assisted reduction of graphene oxide on Ni foam as high performance electrode for supercapacitors. Carbon, 107, 917-924(2016).

    [87] W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, P. M. Ajayan. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol., 6, 496-500(2011).

    [88] Q. Pan, N. Tong, N. He, Y. Liu, E. Shim, B. Pourdeyhimi, W. Gao. Electrospun mat of poly(vinyl alcohol)/graphene oxide for superior electrolyte performance. ACS Appl. Mater. Interfaces, 10, 7927-7934(2018).

    [89] Y. Hu, H. Cheng, F. Zhao, N. Chen, L. Jiang, Z. Feng, L. Qu. All-in-one graphene fiber supercapacitor. Nanoscale, 6, 6448-6451(2014).

    [90] M. F. El-Kady, R. B. Kaner. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun., 4, 1475(2013).

    [91] M. Wu, Y. Li, B. Yao, J. Chen, C. Li, G. Shi. A high-performance current collector-free flexible in-plane micro-supercapacitor based on a highly conductive reduced graphene oxide film. J. Mater. Chem. A, 4, 16213-16218(2016).

    [92] Y. Shao, J. Li, Y. Li, H. Wang, Q. Zhang, R. B. Kaner. Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. Mater. Horiz., 4, 1145-1150(2017).

    [93] Y. Liu, B. Weng, Q. Xu, Y. Hou, C. Zhao, S. Beirne, K. Shu, R. Jalili, G. G. Wallace, J. M. Razal, J. Chen. Facile fabrication of flexible microsupercapacitor with high energy density. Adv. Mater. Technol., 1, 1600166(2016).

    [94] B. Xie, Y. Wang, W. Lai, W. Lin, Z. Lin, Z. Zhang, P. Zou, Y. Xu, S. Zhou, C. Yang, F. Kang, C.-P. Wong. Laser-processed graphene based micro-supercapacitors for ultrathin, rollable, compact and designable energy storage components. Nano Energy, 26, 276-285(2016).

    [95] J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, R. S. Ruoff. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano, 5, 6916-6924(2011).

    [96] C. Mattevi, H. Kim, M. Chhowalla. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem., 21, 3324-3334(2011).

    [97] S. Zhou, J. Xu, Y. Xiao, N. Zhao, C.-P. Wong. Low-temperature Ni particle-templated chemical vapor deposition growth of curved graphene for supercapacitor applications. Nano Energy, 13, 458-466(2015).

    [98] L. Zheng, X. Cheng, P. Ye, L. Shen, Q. Wang, D. Zhang, Z. Gu, W. Zhou, D. Wua, Y. Yu. Low temperature growth of three-dimensional network of graphene for high-performance supercapacitor electrodes. Mater. Lett., 218, 90-94(2018).

    [99] X. Zang, P. Li, Q. Chen, K. Wang, J. Wei, D. Wu, H. Zhu. Evaluation of layer-by-layer graphene structures as supercapacitor electrode materials. J. Appl. Phys., 115, 024305(2014).

    [100] P. Xu, J. Kang, J. B. Choi, J. Suhr, J. Yu, F. Li, J. H. Byun, B. S. Kim, T. W. Chou. Laminated ultrathin chemical vapor deposition graphene films based stretchable and transparent high-rate supercapacitor. ACS Nano, 8, 9437-9445(2014).

    [101] J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. G. Samuel, M. J. Yacaman, B. I. Yakobson, J. M. Tour. Laser-induced porous graphene films from commercial polymers. Nat. Commun., 5, 5714(2014).

    [102] Z. Peng, J. Lin, R. Ye, E. L. G. Samuel, J. M. Tour. Flexible and stackable laser-induced graphene supercapacitors. ACS Appl. Mater. Interfaces, 7, 3414-3419(2015).

    [103] R. Ye, Y. Chyan, J. Zhang, Y. Li, X. Han, C. Kittrell, J. M. Tour. Laser-induced graphene formation on wood. Adv. Mater., 29, 1702211(2017).

    [104] Y. Chyan, R. Ye, Y. Li, S. P. Singh, C. J. Arnusch, J. M. Tour. Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano, 12, 2176-2183(2018).

    [105] A. Lamberti, M. Serrapede, G. Ferraro, M. Fontana, F. Perrucci, S. Bianco, A. Chiolerio, S. Bocchini. All-SPEEK flexible supercapacitor exploiting laser-induced graphenization. 2D Mater., 4, 035012(2017).

    [106] M. F. El-Kady, V. Strong, S. Dubin, R. B. Kaner. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science, 335, 1326-1330(2012).

    [107] X. Y. Fu, Y. L. Zhang, H. B. Jiang, D. D. Han, Y. Q. Liu, H. Xia, H. B. Sun. Hierarchically structuring and synchronous photoreduction of graphene oxide films by laser holography for supercapacitors. Opt. Lett., 44, 1714-1717(2019).

    [108] X. Y. Fu, Z. D. Chen, Y. L. Zhang, D. D. Han, J. N. Ma, W. Wang, Z. R. Zhang, H. Xia, H. B. Sun. Direct laser writing of flexible planar supercapacitors based on GO and black phosphorus quantum dot nanocomposites. Nanoscale, 11, 9133-9140(2019).

    [109] A. Perez del Pino, A. Martinez Villarroya, A. Chuquitarqui, C. Logofatu, D. Tonti, E. Gyorgy. Reactive laser synthesis of nitrogen-doped hybrid graphene-based electrodes for energy storage. J. Mater. Chem. A, 6, 16074-16086(2018).

    [110] G. W. Huang, N. Li, Y. Du, Q. P. Feng, H. M. Xiao, X. H. Wu, S. Y. Fu. Laser-printed in-plane micro-supercapacitors: from symmetric to asymmetric structure. ACS Appl. Mater. Interfaces, 10, 723-732(2018).

    [111] F. Wen, C. Hao, J. Xiang, L. Wang, H. Hou, Z. Su, W. Hu, Z. Liu. Enhanced laser scribed flexible graphene-based micro-supercapacitor performance with reduction of carbon nanotubes diameter. Carbon, 75, 236-243(2014).

    [112] R. Z. Li, R. Peng, K. D. Kihm, S. Bai, D. Bridges, U. Tumuluri, Z. Wu, T. Zhang, G. Compagnini, Z. Feng, A. Hu. High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes. Energy Environ. Sci., 9, 1458-1467(2016).

    [113] J. Y. Hwang, M. F. El-Kady, Y. Wang, L. Wang, Y. Shao, K. Marsh, J. M. Ko, R. B. Kaner. Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy, 18, 57-70(2015).

    [114] J. Y. Hwang, M. F. El-Kady, M. Li, C. W. Lin, M. Kowal, X. Han, R. B. Kaner. Boosting the capacitance and voltage of aqueous supercapacitors via redox charge contribution from both electrode and electrolyte. Nano Today, 15, 15-25(2017).

    [115] F. Clerici, M. Fontana, S. Bianco, M. Serrapede, F. Perrucci, S. Ferrero, E. Tresso, A. Lamberti. In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes. ACS Appl. Mater. Interfaces, 8, 10459-10465(2016).

    [116] E. Ghoniem, S. Mori, A. Abdel-Moniem. Low-cost flexible supercapacitors based on laser reduced graphene oxide supported on polyethylene terephthalate substrate. J. Power Sources, 324, 272-281(2016).

    [117] L. Li, J. Zhang, Z. Peng, Y. Li, C. Gao, Y. Ji, R. Ye, N. D. Kim, Q. Zhong, Y. Yang, H. Fei, G. Ruan, J. M. Tour. High-performance pseudocapacitive microsupercapacitors from laser-induced graphene. Adv. Mater., 28, 838-845(2016).

    [118] Z. Peng, R. Ye, J. A. Mann, D. Zakhidov, Y. Li, P. R. Smalley, J. Lin, J. M. Tour. Flexible boron-doped laser-induced graphene microsupercapacitors. ACS Nano, 9, 5868-5875(2015).

    [119] S. Park, H. Lee, Y. J. Kim, P. S. Lee. Fully laser-patterned stretchable microsupercapacitors integrated with soft electronic circuit components. NPG Asia Mater., 10, 959-969(2018).

    [120] Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng, J. Chen. Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv. Mater., 24, 5610-5616(2012).

    [121] Y. Zhao, C. Hu, Y. Hu, H. Cheng, G. Shi, L. Qu. A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem. (Int. Ed.), 51, 11371-11375(2012).

    [122] Z. Lei, L. Lu, X. S. Zhao. The electrocapacitive properties of graphene oxide reduced by urea. Energy Environ. Sci., 5, 6391-6399(2012).

    [123] H. C. Youn, S. M. Bak, M. S. Kim, C. Jaye, D. A. Fischer, C. W. Lee, X. Q. Yang, K. C. Roh, K. B. Kim. High-surface-area nitrogen-doped reduced graphene oxide for electric double-layer capacitors. ChemSusChem, 8, 1875-1884(2015).

    [124] A. L. M. Reddy, A. Srivastava, S. R. Gowda, H. Gullapalli, M. Dubey, P. M. Ajayan. Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano, 4, 6337-6342(2010).

    [125] S. P. Singh, Y. Li, J. Zhang, J. M. Tour, C. J. Arnusch. Sulfur-doped laser-induced porous graphene derived from polysulfone-class polymers and membranes. ACS Nano, 12, 289-297(2018).

    [126] X.-Y. Fu, D.-L. Chen, Y. Liu, H.-B. Jiang, H. Xia, H. Ding, Y.-L. Zhang. Laser reduction of nitrogen-rich carbon nanoparticles@graphene oxides composites for high rate performance supercapacitors. ACS Appl. Nano Mater., 1, 777-784(2018).

    [127] F. Wang, X. Dong, K. Wang, W. Duan, M. Gao, Z. Zhai, C. Zhu, W. Wang. Laser-induced nitrogen-doped hierarchically porous graphene for advanced electrochemical energy storage. Carbon, 150, 396-407(2019).

    [128] D. E. Lobo, P. C. Banerjee, C. D. Easton, M. Majumder. Miniaturized supercapacitors: focused ion beam reduced graphene oxide supercapacitors with enhanced performance metrics. Adv. Energy Mater., 5, 1500665(2015).

    [129] C. Shao, T. Xu, J. Gao, Y. Liang, Y. Zhao, L. Qu. Flexible and integrated supercapacitor with tunable energy storage. Nanoscale, 9, 12324-12329(2017).

    [130] J. Cai, C. Lv, A. Watanabe. Laser direct writing and selective metallization of metallic circuits for integrated wireless devices. ACS Appl. Mater. Interfaces, 10, 915-924(2018).

    [131] S. L. Kim, J.-H. Hsu, C. Yu. Intercalated graphene oxide for flexible and practically large thermoelectric voltage generation and simultaneous energy storage. Nano Energy, 48, 582-589(2018).

    [132] J. Cai, C. Lv, A. Watanabe. Laser direct writing of high-performance flexible all-solid-state carbon micro-supercapacitors for an on-chip self-powered photodetection system. Nano Energy, 30, 790-800(2016).

    [133] H. Liu, M. Li, R. B. Kaner, S. Chen, Q. Pei. Monolithically integrated self-charging power pack consisting of a silicon nanowire array/conductive polymer hybrid solar cell and a laser-scribed graphene supercapacitor. ACS Appl. Mater. Interfaces, 10, 15609-15615(2018).

    [134] L. V. Thekkekara, B. Jia, Y. Zhang, L. Qiu, D. Li, M. Gu. On-chip energy storage integrated with solar cells using a laser scribed graphene oxide film. Appl. Phys. Lett., 107, 031105(2015).

    CLP Journals

    [1] Meng Zhang, Yuxi Chu, Jun Zhao, Dongyu Yan, Yongzhi Li, Genyu Bi, Bowen Liu, Minglie Hu. Efficient generation of third harmonics in Yb-doped femtosecond fiber laser via spatial and temporal walk-off compensation[J]. Chinese Optics Letters, 2021, 19(3): 031402

    Xiu-Yan Fu, Zhao-Di Chen, Dong-Dong Han, Yong-Lai Zhang, Hong Xia, Hong-Bo Sun. Laser fabrication of graphene-based supercapacitors[J]. Photonics Research, 2020, 8(4): 577
    Download Citation