• Chinese Journal of Lasers
  • Vol. 45, Issue 2, 207015 (2018)
Jiang Chenyu1、2, Sun Meixiu3, Li Yingxin3, and Wang Chuji4、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.3788/CJL201845.0207015 Cite this Article Set citation alerts
    Jiang Chenyu, Sun Meixiu, Li Yingxin, Wang Chuji. Breath Analysis Using Laser Spectroscopy Techniques: Development and Future[J]. Chinese Journal of Lasers, 2018, 45(2): 207015 Copy Citation Text show less
    References

    [1] Pauling L, Robinson A B, Teranish R et al. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography[J]. Proceedings of the National Academy of Sciences of the United States of America, 68, 2374-2376(1971). http://www.jstor.org/stable/61049

    [2] Deng C, Zhang W, Zhang J et al. Rapid determination of acetone in human plasma by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization[J]. Journal of Chromatography B, 805, 235-240(2004). http://www.sciencedirect.com/science/article/pii/S1570023204006579

    [3] Wang C, Scherrer S T, Hossain D. Measurements of cavity ringdown spectroscopy of acetone in the ultraviolet and near-infrared spectral regions: Potential for development of a breath analyzer[J]. Applied Spectroscopy, 58, 784-791(2004). http://www.ncbi.nlm.nih.gov/pubmed/15282042

    [4] Ying K J, Huang Q. Diagnostic valne of breath test for early lung cancer[J]. International Journal of Respiration, 26, 143-145(2006).

    [5] Mccurdy M R, Bakhirkin Y, Wysocki G. et al. Recent advances of laser-spectroscopy based techniques for applications in breath analysis[J]. Journal of Breath Research, 1, 014001(2007). http://europepmc.org/abstract/med/21383427

    [6] Tong M M, Wang Y, Li J et al[J]. Study on new instrument for analysis of acetone Instrument Technique and Sensor, 2007, 16-17.

    [7] Wang C, Sahay P. Breath analysis using high-sensitivity laser spectroscopic techniques: Breath biomarkers, spectral finger prints, and detection limits[J]. Sensors, 9, 8230-8262(2009). http://pubmedcentralcanada.ca/pmcc/articles/PMC3292105/

    [8] Wang C J, Mbi A, Shepherd M. A study on breath acetone in diabetic patients using a cavity ringdown breath analyzer: Exploring correlations of breath acetone with blood glucose and glycohemoglobin A1C[J]. IEEE Sensors Journal, 10, 54-63(2010). http://ieeexplore.ieee.org/document/5350908/

    [9] Lin L Q, Dong H, Wang F Y et al. Progress in technology and equipment of exhaled breath detection[J]. China Medical Devices, 31, 11-17(2016).

    [10] Jiang C Y, Sun M X, Wang Z N et al. A portable real-time ringdown breath acetone analyzer: Toward potential diabetic screening and management[J]. Sensors, 8, 1199-1214(2016). http://pubmedcentralcanada.ca/pmcc/articles/PMC5017365/

    [11] Sun M X, Chen Z Y, Gong Z Y et al. Determination of breath acetone in 149 type 2 diabetic patients using a ringdown breath-acetone analyzer[J]. Analytical & Bioanalytical Chemistry, 407, 1641-1650(2015). http://europepmc.org/abstract/med/25572689

    [12] Peng Q L, Li M H. The progressive research of gas analysis technique based on TDLAS in medical diagnostics[J]. Applied Laser, 28, 341-344(2008).

    [13] Thorpe M J, Moll K D, Jones R J et al. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection[J]. Science, 311, 1595-1599(2006). http://europepmc.org/abstract/MED/16543457

    [15] Balslevclausen D, Ye J, Kirchner M S. et al. Cavity-enhanced optical frequency comb spectroscopy: Application to human breath analysis[J]. Optics Express, 16, 2387-2397(2008). http://www.europepmc.org/abstract/MED/18542317

    [16] Metsaelae M[2017-11-01]. Optical techniques for breath analysis: From single to multi-species detection Journal of Breath Research[2017-11-01].https://www.researchgate.net/publication/319492842_Optical_techniques_for_breath_a.

    [17] Wang J, Zhang W, Li L et al. Breath ammonia detection based on tunable fiber laser photoacoustic spectroscopy[J]. Applied Physics B, 103, 263-269(2011). http://link.springer.com/article/10.1007/s00340-011-4550-z

    [18] Ventrillard I, Gorrotxategi-Carbajo P, Romanini D. Part per trillion nitric oxide measurement by optical feedback cavity-enhanced absorption spectroscopy in the mid-infrared[J]. Applied Physics B, 123, 180(2017). http://link.springer.com/10.1007/s00340-017-6750-7

    [19] Schwaighofer A, Brandstetter M, Lendl B. Quantum cascade lasers (QCLs) in biomedical spectroscopy[J]. Chemical Society Reviews, 46, 5903-5924(2017). http://www.ncbi.nlm.nih.gov/pubmed/28816307

    [20] Tuzson B, Jágerská J, Looser H et al. Highly selective volatile organic compounds breath analysis using a broadly-tunable vertical-external-cavity surface-emitting laser[J]. Analytical Chemistry, 89, 6377-6383(2017). http://pubs.acs.org/doi/abs/10.1021/acs.analchem.6b04511?src=recsys

    [21] Bayrakli I. Breath analysis using external cavity diode lasers: A review[J]. Journal of Biomedical Optics, 22, 040901(2017). http://www.ncbi.nlm.nih.gov/pubmed/28418535

    [22] Ciaffoni L. O'Neill D P, Couper J H, et al. In-airway molecular flow sensing: A new technology for continuous, noninvasive monitoring of oxygen consumption in critical care[J]. Science Advances, 2, e1600560(2016). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4980105/

    [23] Truong G W, Douglass K O, Maxwell S E et al. Frequency-agile, rapid scanning spectroscopy[J]. Nature Photonics, 7, 532-534(2013). http://www.nature.com/nphoton/journal/v7/n7/abs/nphoton.2013.98.html

    [24] Blaikie T P, Couper J H, Hancock G et al. A portable device for measuring breath acetone based on sample preconcentration and cavity enhanced spectroscopy[J]. Analytical Chemistry, 88, 11016-11021(2016). http://pubs.acs.org/doi/abs/10.1021/acs.analchem.6b02837

    [25] Ghorbani R, Schmidt F M. ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes[J]. Optics Express, 25, 12743-12752(2017). http://europepmc.org/abstract/MED/28786628

    [26] Mikołajczyk J, Wojtas J, Bielecki Z et al. System of optoelectronic sensors for breath analysis[J]. Metrology & Measurement Systems, 23, 481-489(2016). http://www.degruyter.com/view/j/mms.2016.23.issue-3/mms-2016-0030/mms-2016-0030.xml

    [27] Mao X, Zheng P, Wang X et al. Breath methane detection based on all-optical photoacoustic spectrometer[J]. Sensors & Actuators B, 239, 1257-1260(2016). http://www.sciencedirect.com/science/article/pii/S0925400516315568

    Jiang Chenyu, Sun Meixiu, Li Yingxin, Wang Chuji. Breath Analysis Using Laser Spectroscopy Techniques: Development and Future[J]. Chinese Journal of Lasers, 2018, 45(2): 207015
    Download Citation