• Advanced Photonics
  • Vol. 4, Issue 2, 026004 (2022)
Ying Zuo1、†, Chenfeng Cao1, Ningping Cao2、3, Xuanying Lai4, Bei Zeng1、*, and Shengwang Du4、*
Author Affiliations
  • 1The Hong Kong University of Science and Technology, Department of Physics, Hong Kong, China
  • 2University of Guelph, Department of Mathematics and Statistics, Guelph, Ontario, Canada
  • 3University of Waterloo, Institute for Quantum Computing, Waterloo, Ontario, Canada
  • 4The University of Texas at Dallas, Department of Physics, Richardson, Texas, United States
  • show less
    DOI: 10.1117/1.AP.4.2.026004 Cite this Article Set citation alerts
    Ying Zuo, Chenfeng Cao, Ningping Cao, Xuanying Lai, Bei Zeng, Shengwang Du. Optical neural network quantum state tomography[J]. Advanced Photonics, 2022, 4(2): 026004 Copy Citation Text show less
    References

    [1] F. Bouchard et al. Quantum process tomography of a high-dimensional quantum communication channel. Quantum, 3, 138(2019).

    [2] P. W. Hawkes, G. M. D’Ariano, M. G. Paris, M. F. Sacchi. Quantum tomography. Adv. Imaging Electron Phys., 128, 206-309(2003).

    [3] U. Leonhardt. Quantum-state tomography and discrete wigner function. Phys. Rev. Lett., 74, 4101-4105(1995).

    [4] R. Thew et al. Qudit quantum-state tomography. Phys. Rev. A, 66, 012303(2002).

    [5] A. I. Lvovsky, M. G. Raymer. Continuous-variable optical quantum-state tomography. Rev. Mod. Phys., 81, 299-332(2009).

    [6] M. Rambach et al. Robust and efficient high-dimensional quantum state tomography. Phys. Rev. Lett., 126, 100402(2021).

    [7] R. O’Donnell, J. Wright. Efficient quantum tomography, 899-912(2016).

    [8] S. Aaronson. The learnability of quantum states. Proc. R. Soc. A, 463, 3089-3114(2007).

    [9] S. Aaronson et al. Online learning of quantum states. J. Stat. Mech., 2019, 124019(2019).

    [10] S. Aaronson. Shadow tomography of quantum states. SIAM J. Comput., 49, STOC18-368(2019).

    [11] H.-Y. Huang, R. Kueng, J. Preskill. Predicting many properties of a quantum system from very few measurements. Nat. Phys., 16, 1050-1057(2020).

    [12] M. Y. Niu et al. Universal quantum control through deep reinforcement learning. NPJ Quantum Inf., 5, 33(2019).

    [13] Z. An et al. Quantum optimal control of multilevel dissipative quantum systems with reinforcement learning. Phys. Rev. A, 103, 012404(2021).

    [14] N. Cao et al. Neural networks for quantum inverse problems(2021).

    [15] C. Cao et al. Supervised learning in Hamiltonian reconstruction from local measurements on eigenstates. J. Phys.: Condens. Matter, 33, 064002(2020).

    [16] T. Xin et al. Local-measurement-based quantum state tomography via neural networks. NPJ Quantum Inf., 5, 109(2019).

    [17] G. Torlai et al. Neural-network quantum state tomography. Nat. Phys., 14, 447-450(2018).

    [18] A. M. Palmieri et al. Experimental neural network enhanced quantum tomography. NPJ Quantum Inf., 6, 20(2020).

    [19] Y. Quek, S. Fort, H. K. Ng. Adaptive quantum state tomography with neural networks. NPJ Quantum Inf., 7, 105(2021).

    [20] S. Ahmed et al. Classification and reconstruction of optical quantum states with deep neural networks. Phys. Rev. Res., 3, 033278(2021).

    [21] J. Carrasquilla et al. Reconstructing quantum states with generative models. Nat. Mach. Intell, 1, 155-161(2019).

    [22] S. Ahmed et al. Quantum state tomography with conditional generative adversarial networks. Phys. Rev. Lett., 127, 140502(2021).

    [23] G. Wetzstein et al. Inference in artificial intelligence with deep optics and photonics. Nature, 588, 39-47(2020).

    [24] B. J. Shastri et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics, 15, 102-114(2021).

    [25] D. Woods, T. J. Naughton. Photonic neural networks. Nat. Phys., 8, 257-259(2012).

    [26] Y. Shen et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).

    [27] X. Lin et al. All-optical machine learning using diffractive deep neural networks. Science, 361, 1004-1008(2018).

    [28] Y. Zuo et al. All-optical neural network with nonlinear activation functions. Optica, 6, 1132-1137(2019).

    [29] Y. Zuo et al. Scalability of all-optical neural networks based on spatial light modulators. Phys. Rev. Appl., 15, 054034(2021).

    [30] J. Feldmann et al. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569, 208-214(2019).

    [31] X. Guo et al. Backpropagation through nonlinear units for the all-optical training of neural networks. Photonics Res., 9, B71-B80(2021).

    [32] A. Ryou et al. Free-space optical neural network based on thermal atomic nonlinearity. Photonics Res., 9, B128-B134(2021).

    [33] D. Gross et al. Quantum state tomography via compressed sensing. Phys. Rev. Lett., 105, 150401(2010).

    [34] S. T. Flammia et al. Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators. New J. Phys., 14, 095022(2012).

    [35] J. Chen et al. Uniqueness of quantum states compatible with given measurement results. Phys. Rev. A, 88, 012109(2013).

    [36] X. Ma et al. Pure-state tomography with the expectation value of pauli operators. Phys. Rev. A, 93, 032140(2016).

    [37] H. J. Metcalf, P. van der Straten. Laser cooling and trapping of atoms. J. Opt. Soc. Am. B, 20, 887-908(2003).

    [38] S. Zhang et al. A dark-line two-dimensional magneto-optical trap of 85Rb atoms with high optical depth. Rev. Sci. Instrum., 83, 073102(2012).

    [39] S. E. Harris. Electromagnetically induced transparency. Phys. Today, 50, 36-42(1997).

    [40] M. Fleischhauer, A. Imamoglu, J. P. Marangos. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys., 77, 633-673(2005).

    [41] D. P. Kingma, J. Ba. Adam: a method for stochastic optimization(2017).

    [42] IBM Q 5 Ourense backend specification V1.3.5(2020).

    [43] M. Motta et al. Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution. Nat. Phys., 16, 205-210(2020).

    [44] C. Cao et al. Quantum imaginary time evolution steered by reinforcement learning(2021).

    [45] H. J. Kimble. The quantum internet. Nature, 453, 1023-1030(2008).

    [46] Z. Gu, C. Yang, J. F. Chen. Characterization of the photon-number state of a narrow-band single photon generated from a cold atomic cloud. Opt. Commun., 439, 206-209(2019).

    [47] Y. Yu et al. Entanglement of two quantum memories via fibres over dozens of kilometres. Nature, 578, 240-245(2020).

    [48] C. Li et al. Quantum communication between multiplexed atomic quantum memories. Phys. Rev. Lett., 124, 240504(2020).

    [49] K. S. Choi et al. Entanglement of spin waves among four quantum memories. Nature, 468, 412-416(2010).

    [50] Y. Pu et al. Experimental entanglement of 25 individually accessible atomic quantum interfaces. Sci. Adv., 4, eaar3931(2018).

    [51] B. Xu et al. Empirical evaluation of rectified activations in convolutional network(2015).

    [52] R. Di Leonardo, F. Ianni, G. Ruocco. Computer generation of optimal holograms for optical trap arrays. Opt. Express, 15, 1913-1922(2007).

    [53] F. Nogrette et al. Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries. Phys. Rev. X, 4, 021034(2014).

    Ying Zuo, Chenfeng Cao, Ningping Cao, Xuanying Lai, Bei Zeng, Shengwang Du. Optical neural network quantum state tomography[J]. Advanced Photonics, 2022, 4(2): 026004
    Download Citation