• Laser & Optoelectronics Progress
  • Vol. 59, Issue 7, 0717002 (2022)
Tingting Zhang, Mengdi Hou, Zhuonan Jia, Shuangquan Hua, Wenjie Wang*, and Shaoding Liu
Author Affiliations
  • Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan , Shanxi 030024, China
  • show less
    DOI: 10.3788/LOP202259.0717002 Cite this Article Set citation alerts
    Tingting Zhang, Mengdi Hou, Zhuonan Jia, Shuangquan Hua, Wenjie Wang, Shaoding Liu. Laser-Based High Resolution Melting Analysis for Studying G-Quadruplux[J]. Laser & Optoelectronics Progress, 2022, 59(7): 0717002 Copy Citation Text show less
    References

    [1] Williamson J R. G-quartet structures in telomeric DNA[J]. Annual Review of Biophysics and Biomolecular Structure, 23, 703-730(1994).

    [2] Davis J T. G-quartets 40 years later: from 5’-GMP to molecular biology and supramolecular chemistry[J]. Angewandte Chemie (International Ed. in English), 43, 668-698(2004).

    [3] Lipps H J, Rhodes D. G-quadruplex structures: in vivo evidence and function[J]. Trends in Cell Biology, 19, 414-422(2009).

    [4] Reinhold W C, Mergny J L, Liu H et al. Exon array analyses across the NCI-60 reveal potential regulation of TOP1 by transcription pausing at guanosine quartets in the first intron[J]. Cancer Res, 70, 2191-2203(2010).

    [5] Gomez D, Lemarteleur T, Lacroix L et al. Telomerase downregulation induced by the G-quadruplex ligand 12459 in A549 cells is mediated by hTERT RNA alternative splicing[J]. Nucleic Acids Research, 32, 371-379(2004).

    [6] Gomez D, Guédin A, Mergny J L et al. A G-quadruplex structure within the 5’-UTR of TRF2 mRNA represses translation in human cells[J]. Nucleic Acids Research, 38, 7187-7198(2010).

    [7] Wittwer C T, Reed G H, Gundry C N et al. High-resolution genotyping by amplicon melting analysis using LCGreen[J]. Clinical Chemistry, 49, 853-860(2003).

    [8] Reed G H, Wittwer C T. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis[J]. Clinical Chemistry, 50, 1748-1754(2004).

    [9] Monis P T, Giglio S, Saint C P. Comparison of SYTO9 and SYBR Green I for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis[J]. Analytical Biochemistry, 340, 24-34(2005).

    [10] Do H, Krypuy M, Michael P L et al. High resolution melting analysis for rapid and sensitive EGFR and KRAS mutation detection in formalin fixed paraffin embedded biopsies[J]. BMC Cancer, 8, 142(2008).

    [11] Montgomery J, Wittwer C T, Palais R et al. Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis[J]. Nature Protocols, 2, 59-66(2007).

    [12] Sundberg S O, Wittwer C T, Greer J et al. Solution-phase DNA mutation scanning and SNP genotyping by nanoliter melting analysis[J]. Biomedical Microdevices, 9, 159-166(2007).

    [13] Gudnason H, Dufva M, Bang D D et al. Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature[J]. Nucleic Acids Research, 35, e127(2007).

    [14] Mackay J F, Wright C D, Bonfiglioli R G. A new approach to varietal identification in plants by microsatellite high resolution melting analysis: application to the verification of grapevine and olive cultivars[J]. Plant Methods, 4, 8(2008).

    [15] López C M R, Asenjo B G, Lloyd A J et al. Direct detection and quantification of methylation in nucleic acid sequences using high-resolution melting analysis[J]. Analytical Chemistry, 82, 9100-9108(2010).

    [16] Jares-Erijman E A, Jovin T M. Determination of DNA helical handedness by fluorescence resonance energy transfer[J]. Journal of Molecular Biology, 257, 597-617(1996).

    [17] Dolghih E, Roitberg A E, Krause J L. Fluorescence resonance energy transfer in dye-labeled DNA[J]. Journal of Photochemistry and Photobiology A: Chemistry, 190, 321-327(2007).

    [18] de Cian A, Guittat L, Kaiser M et al. Fluorescence-based melting assays for studying quadruplex ligands[J]. Methods, 42, 183-195(2007).

    [19] Huang F, Ying L, Fersht A R. Direct observation of barrier-limited folding of BBL by single-molecule fluorescence resonance energy transfer[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 16239-16244(2009).

    [20] Liu H L, Wang Y H, Shen A G et al. Highly selective and sensitive method for cysteine detection based on fluorescence resonance energy transfer between FAM-tagged ssDNA and graphene oxide[J]. Talanta, 93, 330-335(2012).

    [21] de Rache A, Mergny J L. Assessment of selectivity of G-quadruplex ligands via an optimised FRET melting assay[J]. Biochimie, 115, 194-202(2015).

    [22] Lee W, Fan X. Intracavity DNA melting analysis with optofluidic lasers[J]. Analytical Chemistry, 84, 9558-9563(2012).

    [23] Liang X Y, Hou M D, Zhang T T et al. High resolution melting technology based on Fabry-Perot microcavity laser[J]. Laser & Optoelectronics Progress, 55, 101702(2018).

    [24] Hou M D, Liang X Y, Zhang T T et al. DNA melting analysis with optofluidic lasers based on Fabry-Pérot microcavity[J]. ACS Sensors, 3, 1750-1755(2018).

    Tingting Zhang, Mengdi Hou, Zhuonan Jia, Shuangquan Hua, Wenjie Wang, Shaoding Liu. Laser-Based High Resolution Melting Analysis for Studying G-Quadruplux[J]. Laser & Optoelectronics Progress, 2022, 59(7): 0717002
    Download Citation