• Chinese Journal of Lasers
  • Vol. 47, Issue 11, 1113002 (2020)
Jia Tang, Jiaxiang Li, Qin Chen, and Long Wen*
Author Affiliations
  • Institute of Nanophotonics, Jinan University, Guangzhou, Guangdong 510632, China
  • show less

    Abstract

    In recent years, the generation, transport, and harvesting of hot carriers in surface plasmon (SP) enhanced metal nanostructures have been extensively and deeply studied. Among them, a new photoelectric conversion mechanism based on electronic tunneling and thermal emission effect, combined with planarization manufacture and complementary metal oxide semiconductor (CMOS) compatible integration, is expected to be an alternative scheme for silicon-based infrared photoelectric detection. At present, these detectors are mainly used in metal-semiconductor Schottky junction photovoltaic devices, which have weak photoelectric response. In this paper, a novel photoconductive device based on metal-silicon composite disordered nanostructures is reported. Due to the localized hot spot effect of the disordered surface plasmon and the significant photoconductivity gain of the multiple interdigital metal semiconductor metal (MSM) structures, the broad-band strong photoelectric response of the silicon sub-band gap is obtained experimentally. Finally, the photocurrent responsivity of the hot carrier mediated multiple interdigital MSM devices is as high as 2.50 A/W at 1310 nm.

    1 引言

    近红外光电导探测器被广泛应用于光通信、环境监测、遥感和消费电子等多个领域[1-6]。目前,主流的红外光电导探测器主要基于锗、III-V族化合物和碲镉汞等半导体材料的带间跃迁光子吸收机制,具有较高的光电转换效率,其工作范围覆盖近红外到中远红外多个波段。然而这些非硅材料的光电导探测器成本高,且难以与硅驱动的电路集成,在大规模、高密度阵列化应用需求下,这些问题尤为突出。虽然关于上述红外材料与硅的异质外延或者键合的研究已有报道,但受制于晶格匹配和热学匹配等多方面因素,这些异质集成红外探测方案仍面临着材料及制作成本昂贵、工艺复杂和稳定性差等一系列问题[7-10]。鉴于此,全硅材料或硅CMOS器件兼容的红外探测手段成为相关领域的重要研究方向。针对硅无法直接吸收能量小于其禁带宽度1.1 eV的光子的问题,人们提出亚带隙光子吸收机制来实现硅红外光电探测。例如,低维纳米结构化硅可借助陷阱态或表面态引入中间能级,在硅吸收限外仍能实现较高效的光子吸收进而实现光电转换。但由于陷阱态对价电子的捕获与释放存在较长弛豫时间,此类亚带隙探测器存在响应慢和稳定性差等问题。

    Copy Citation Text
    Tang Jia, Li Jiaxiang, Chen Qin, Wen Long. Surface Plasmon Enhanced Silicon-Based Near-Infrared Photoconductive Detector[J]. Chinese Journal of Lasers, 2020, 47(11): 1113002
    Download Citation
    Category: micro and nano optics
    Received: May. 21, 2020
    Accepted: --
    Published Online: Oct. 23, 2020
    The Author Email: Long Wen (longwen@jnu.edu.cn)