• Chinese Journal of Lasers
  • Vol. 47, Issue 11, 1113002 (2020)
Tang Jia, Li Jiaxiang, Chen Qin, and Wen Long*
Author Affiliations
  • Institute of Nanophotonics, Jinan University, Guangzhou, Guangdong 510632, China
  • show less
    DOI: 10.3788/CJL202047.1113002 Cite this Article Set citation alerts
    Tang Jia, Li Jiaxiang, Chen Qin, Wen Long. Surface Plasmon Enhanced Silicon-Based Near-Infrared Photoconductive Detector[J]. Chinese Journal of Lasers, 2020, 47(11): 1113002 Copy Citation Text show less
    References

    [1] Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications[J]. Nature Photonics, 4, 297-301(2010). http://www.nature.com/articles/nphoton.2010.40

    [2] Rogalski A, Antoszewski J, Faraone L. Third-generation infrared photodetector arrays[J]. Journal of Applied Physics, 105, 091101(2009). http://scitation.aip.org/content/aip/journal/jap/105/9/10.1063/1.3099572

    [3] Yu Y F, Miao F, He J et al. Photodetecting and light-emitting devices based on two-dimensional materials[J]. Chinese Physics B, 26, 036801(2017).

    [4] Shi Z, Li L Z, Zhao Y et al. Implantable optoelectronic devices and systems for biomedical application[J]. Chinese Journal of Lasers, 45, 0207001(2018).

    [5] Yu Y F, Ni Z H. Photodetection based on surface plasmon-induced hot electrons[J]. Laser & Optoelectronics Progress, 56, 202403(2019).

    [6] Liu Y Z, Li G H, Cui Y X et al. Research progress in perovskite photodetectors[J]. Laser & Optoelectronics Progress, 56, 010001(2019).

    [7] Beling A, Campbell J C. InP-based high-speed photodetectors[J]. Journal of Lightwave Technology, 27, 343-355(2009). http://www.opticsinfobase.org/abstract.cfm?uri=JLT-27-3-343

    [8] Kang Y, Mages P, Clawson A R et al. Fused InGaAs-Si avalanche photodiodes with low-noise performances[J]. IEEE Photonics Technology Letters, 14, 1593-1595(2002). http://ieeexplore.ieee.org/document/1042013

    [9] Koester S J, Schaub J D, Dehlinger G et al. Germanium-on-SOI infrared detectors for integrated photonic applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 12, 1489-1502(2006). http://ieeexplore.ieee.org/document/4032665

    [10] Harame D L, Koester S J, Freeman G et al. The revolution in SiGe: impact on device electronics[J]. Applied Surface Science, 224, 9-17(2004).

    [11] Brongersma M L, Halas N J, Nordlander P. Plasmon-induced hot carrier science and technology[J]. Nature Nanotechnology, 10, 25-34(2015).

    [12] Yu Y F, Sun Y, Hu Z L et al. Fast photoelectric conversion in the near-infrared enabled by plasmon-induced hot-electron transfer[J]. Advanced Materials, 31, 1903829(2019).

    [13] Wang Y, Shen L, Wang Y et al. Hot electron-driven photocatalysis and transient absorption spectroscopy in plasmon resonant grating structures[J]. Faraday Discussions, 214, 325-339(2019).

    [14] Liu W K, Wang W Q, Guan Z Q et al. A plasmon modulated photothermoelectric photodetector in silicon nanostripes[J]. Nanoscale, 11, 4918-4924(2019).

    [15] Knight M W, Sobhani H, Nordlander P et al. Photodetection with active optical antennas[J]. Science, 332, 702-704(2011).

    [16] Wen L, Chen Y F, Liu W W et al. Enhanced photoelectric and photothermal responses on silicon platform by plasmonic absorber and omni-Schottky junction[J]. Laser & Photonics Reviews, 11, 1700059(2017).

    [17] Ajiki Y, Kan T, Yahiro M et al. Silicon based near infrared photodetector using self-assembled organic crystalline nano-pillars[J]. Applied Physics Letters, 108, 151102(2016).

    [18] Wen L, Chen Y, Liang L et al. Hot electron harvesting via photoelectric ejection and photothermal heat relaxation in hotspots-enriched plasmonic/photonic disordered nanocomposites[J]. ACS Photonics, 5, 581-591(2018).

    [19] Yang Z, Liu M, Liang S H et al. Hybrid modes in plasmonic cavity array for enhanced hot-electron photodetection[J]. Optics Express, 25, 20268-20273(2017).

    [20] Goykhman I, Desiatov B, Khurgin J et al. Locally oxidized silicon surface-plasmon Schottky detector for telecom regime[J]. Nano Letters, 11, 2219-2224(2011).

    [21] Yakubovsky D I, Stebunov Y V, Kirtaev R V et al. Ultrathin and ultrasmooth gold films on monolayer MoS2[J]. Advanced Materials Interfaces, 6, 1900196(2019).

    [22] Rosenblatt G, Simkhovich B, Bartal G et al. Nonmodal plasmonics: controlling the forced optical response of nanostructures[J]. Physical Review X, 10, 011071(2020).

    [23] Gao L H, Lemarchand F, Lequime M. Comparison of different dispersion models for single layer optical thin film index determination[J]. Thin Solid Films, 520, 501-509(2011).

    [24] Li W, Valentine J. Harvesting the loss: surface plasmon-based hot electron photodetection[J]. Nanophotonics, 6, 177-191(2017).

    [25] Chen B. Structure optimization and temperature dependent characteristics study of SiC MSM ultraviolet detector Xi'an:[D]. Xidian University(2012).

    [26] Chen Y F. Hot electron infrared detector based on surface plasmon effect[D]. Shanghai: Shanghai University(2017).

    Tang Jia, Li Jiaxiang, Chen Qin, Wen Long. Surface Plasmon Enhanced Silicon-Based Near-Infrared Photoconductive Detector[J]. Chinese Journal of Lasers, 2020, 47(11): 1113002
    Download Citation