• Photonics Research
  • Vol. 12, Issue 4, 793 (2024)
Zengyi Xu1, Xianhao Lin1, Zhiteng Luo1, Qianying Lin2, Jianli Zhang2, Guangxu Wang2, Xiaolan Wang2, Fengyi Jiang2, Ziwei Li1, Jianyang Shi1, Junwen Zhang1, Chao Shen1, and Nan Chi1、*
Author Affiliations
  • 1Key Laboratory for Information Science of Electromagnetic Waves (MoE), Department of Communication Science and Engineering, Fudan University, Shanghai 200433, China
  • 2National Institute of LED on Silicon Substrate, Nanchang University, Nanchang 330096, China
  • show less
    DOI: 10.1364/PRJ.517212 Cite this Article Set citation alerts
    Zengyi Xu, Xianhao Lin, Zhiteng Luo, Qianying Lin, Jianli Zhang, Guangxu Wang, Xiaolan Wang, Fengyi Jiang, Ziwei Li, Jianyang Shi, Junwen Zhang, Chao Shen, Nan Chi. Flexible 2 × 2 multiple access visible light communication system based on an integrated parallel GaN/InGaN micro-photodetector array module[J]. Photonics Research, 2024, 12(4): 793 Copy Citation Text show less
    References

    [1] N. Chi, Y. Zhou, Y. Wei. Visible light communication in 6G: advances, challenges, and prospects. IEEE Veh. Technol. Mag., 15, 93-102(2020).

    [2] H. Sharma, R. K. Jha. VLC enabled hybrid wireless network for B5G/6G communications. Wireless Pers. Commun., 124, 1741-1771(2022).

    [3] M. Z. Chowdhury, Md. Shahjalal, S. Ahmed. 6G wireless communication systems: applications, requirements, technologies, challenges, and research directions. IEEE Open J. Commun. Soc., 1, 957-975(2020).

    [4] B. Ali, M. A. Gregory, S. Li. Multi-access edge computing architecture, data security and privacy: a review. IEEE Access, 9, 18706-18721(2021).

    [5] M. Poongudi, S. Bourouis, A. N. Ahmed. A novel secured multi-access edge computing based VANET with neuro fuzzy systems based blockchain framework. Comput. Commun., 192, 48-56(2022).

    [6] K. Liolis, A. Geurtz, R. Sperber. Use cases and scenarios of 5G integrated satellite-terrestrial networks for enhanced mobile broadband: the SaT5G approach. Satell. Commun. Netw., 37, 91-112(2019).

    [7] G. E. Burrowes, J. Brown, J. Y. Khan. Adaptive space time—time division multiple access (AST-TDMA) protocol for an underwater swarm of AUV’s. MTS/IEEE OCEANS—Bergen, 1-10(2013).

    [8] O. Bello, S. Zeadally. Internet of underwater things communication: architecture, technologies, research challenges and future opportunities. AdHoc Netw., 135, 102933(2022).

    [9] Q. Wang, Y. Liu, V. G. Menon. UAV-enabled non-orthogonal multiple access networks for ground-air-ground communications. IEEE Trans. Green Commun. Netw., 6, 1340-1354(2022).

    [10] M. A. S. Sejan, M. H. Rahman, M. A. Aziz. A comprehensive survey on MIMO visible light communication: current research, machine learning and future trends. Sensors, 23, 739(2023).

    [11] Z. Gao, Y. Wang, X. Liu. FFDNet-based channel estimation for massive MIMO visible light communication systems. IEEE Wireless Commun. Lett., 9, 340-343(2020).

    [12] L. An, H. Shen, J. Wang. Energy efficiency optimization for MIMO visible light communication systems. IEEE Wireless Commun. Lett., 9, 452-456(2020).

    [13] N. Su, E. Panayirci, M. Koca. Physical layer security for multi-user MIMO visible light communication systems with generalized space shift keying. IEEE Trans. Commun., 69, 2585-2598(2021).

    [14] W. Niu, Z. Xu, W. Xiao. Phosphor-free golden light LED array for 5.4-Gbps visible light communication using MIMO Tomlinson-Harashima precoding. J. Lightwave Technol., 40, 5031-5040(2022).

    [15] J. Shi, Y. Liu, Z. Luo. Simplified neural network with physics-informed module in MIMO visible light communication systems. J. Lightwave Technol., 42, 57-68(2023).

    [16] O. Alkhazragi, C. H. Kang, M. Kong. 7.4-Gbit/s visible-light communication utilizing wavelength-selective semipolar micro-photodetector. IEEE Photon. Technol. Lett., 32, 767-770(2020).

    [17] G. Qin, Q. Biau, W. Niu. 100 m free-space visible light communication at 6 Gbps GS-APSK modulation utilizing a GaN blue LD. Asia Communications and Photonics Conference (ACP), 1-3(2021).

    [18] J. Hu, F. Hu, G. Li. A 15 Gbps 520-nm GaN laser diode based visible light communication system utilizing adaptive bit loading scheme. IEEE 6th Optoelectronics Global Conference (OGC), 31-34(2021).

    [19] L.-Y. Wei, Y. Liu, C.-W. Chow. 6.915-Gbit/s white-light phosphor laser diode-based DCO-OFDM visible light communication (VLC) system with functional transmission distance. Electron. Lett., 56, 945-947(2020).

    [20] W. H. Gunawan, C.-W. Chow, Y. Liu. Optical beam steerable visible light communication (VLC) system supporting multiple users using RGB and orthogonal frequency division multiplexed (OFDM) non-orthogonal multiple access (NOMA). Sensors, 22, 8707(2022).

    [21] H. Pahuja, S. Sachdeva, M. Sindhwani. Capacity enhancement of WDM visible light communication system employing 3-SOPs/channel/LD color. J. opt. Commun.(2022).

    [22] J. Hu, F. Hu, J. Jia. 46.4 Gbps visible light communication system utilizing a compact tricolor laser transmitter. Opt. Express, 30, 4365-4373(2022).

    [23] A. Sharma, K. Singh, J. Malhotra. High speed 60 Gbps RGB laser based-FSOC link by incorporating hybrid PDM-MIMO scheme for indoor applications. J. Opt. Commun.(2023).

    [24] K.-T. Ho, R. Chen, G. Liu. 3.2 gigabit-per-second visible light communication link with InGaN/GaN MQW micro-photodetector. Opt. Express, 26, 3037-3045(2018).

    [25] G. S. Spagnolo, L. Cozzella, F. Leccese. Underwater optical wireless communications: overview. Sensors, 20, 2261(2020).

    [26] Y.-K. Su, Y.-Z. Chiou, F.-S. Juang. GaN and InGaN metal-semiconductor-metal photodetectors with different Schottky contact metals. Jpn. J. Appl. Phys., 40, 2996(2001).

    [27] J. C. Carrano, T. Li, D. L. Brown. Very high-speed metal-semiconductor-metal ultraviolet photodetectors fabricated on GaN. Appl. Phys. Lett., 73, 2405-2407(1998).

    [28] D. Kong, T. Lin, J. Chai. A self-powered MXene/InGaN van der Waals heterojunction mini-photodetector for visible light communication. Appl. Phys. Lett., 122, 142104(2023).

    [29] W. Song, J. Chen, Z. Li. Self-powered MXene/GaN van der Waals heterojunction ultraviolet photodiodes with superhigh efficiency and stable current outputs. Adv. Mater., 33, 2101059(2021).

    [30] C. Yi, Y. Chen, Z. Kang. MXene-GaN van der Waals heterostructures for high-speed self-driven photodetectors and light-emitting diodes. Adv. Electron. Mater., 7, 2000955(2021).

    [31] Y.-H. Chang, T.-C. Hsu, F.-J. Liou. High-bandwidth InGaN/GaN semipolar micro-LED acting as a fast photodetector for visible light communications. Opt. Express, 29, 37245-37252(2021).

    [32] K.-T. Ho. 3.2 gigabit-per-second visible light communication link with InGaN/GaN MQW micro-photodetector. Opt. Express, 26, 3037-3045(2018).

    [33] J. Shi, Z. Xu, W. Niu. Si-substrate vertical-structure InGaN/GaN micro-LED-based photodetector for beyond 10  Gbps visible light communication. Photon. Res., 10, 2394-2404(2022).

    [34] Z. Xu, Z. Luo, X. Lin. 15.26 Gb/s Si-substrate GaN high-speed visible light photodetector with super-lattice structure. Opt. Express, 31, 33064-33076(2023).

    [35] X. Liu, S. Yi, X. Zhou. 34.5  m underwater optical wireless communication with 2.70  Gbps data rate based on a green laser diode with NRZ-OOK modulation. Opt. Express, 25, 27937-27947(2017).

    [36] A. Dubey, R. Mishra, Y.-H. Hsieh. Aluminum plasmonics enriched ultraviolet GaN photodetector with ultrahigh responsivity, detectivity, and broad bandwidth. Adv. Sci., 7, 2002274(2020).

    [37] M.-S. Jo, H.-J. Song, B.-J. Kim. Aligned CuO nanowire array for a high performance visible light photodetector. Sci. Rep., 12, 2284(2022).

    [38] A. Aiello, A. K. M. H. Hoque, M. Z. Baten. High-gain silicon-based InGaN/GaN dot-in-nanowire array photodetector. ACS Photon., 6, 1289-1294(2019).

    [39] A. M. Elsayed. Preparation and characterization of a high-efficiency photoelectric detector composed of hexagonal Al2O3/TiO2/TiN/Au nanoporous array. Mater. Sci. Semicond. Process., 139, 106348(2022).

    [40] Z. Xu, Y. Li, X. Liu. Highly sensitive and ultrafast responding array photodetector based on a newly tailored 2D lead iodide perovskite crystal. Adv. Opt. Mater., 7, 1900308(2019).

    [41] N. Ahn, M. Choi. Towards long-term stable perovskite solar cells: degradation mechanisms and stabilization techniques. Adv. Sci., 11, 2306110(2024).

    [42] Z. Xu, W. Niu, Y. Liu. 31.38  Gb/s GaN-based LED array visible light communication system enhanced with V-pit and sidewall quantum well structure. Opto-Electron. Sci., 2, 230005(2023).

    [43] F. Hu, S. Chen, Y. Zhang. High-speed visible light communication systems based on Si-substrate LEDs with multiple superlattice interlayers. PhotoniX, 2, 16(2021).

    [44] J. Kim, J. Kim, Y. Tak. Effect of V-shaped pit size on the reverse leakage current of InGaN/GaN light-emitting diodes. IEEE Electron Device Lett., 34, 1409-1411(2013).

    [45] K. Koike, S. Lee, S. R. Cho. Improvement of light extraction efficiency and reduction of leakage current in GaN-based LED Via V-pit formation. IEEE Photon. Technol. Lett., 24, 449-451(2012).

    [46] J. Park, J.-S. Ha. Reduction of leakage current in InGaN-based LEDs with V-pit embedded structures. J. Korean Phys. Soc., 60, 1367-1370(2012).

    Zengyi Xu, Xianhao Lin, Zhiteng Luo, Qianying Lin, Jianli Zhang, Guangxu Wang, Xiaolan Wang, Fengyi Jiang, Ziwei Li, Jianyang Shi, Junwen Zhang, Chao Shen, Nan Chi. Flexible 2 × 2 multiple access visible light communication system based on an integrated parallel GaN/InGaN micro-photodetector array module[J]. Photonics Research, 2024, 12(4): 793
    Download Citation