• Journal of Innovative Optical Health Sciences
  • Vol. 17, Issue 5, 2440002 (2024)
Lusine Mkrtchyan1,1,">, Torgom Seferyan2,2,">, Marina Parkhats3,3,">, Sergei Lepeshkevich3,3,">..., Boris Dzhagarov3,3,">, Gagik Shmavonyan4,4,">, Elena Tuchina5,5,">, Valery Tuchin5,* and Grigor Gyulkhandanyan1,1,">|Show fewer author(s)
Author Affiliations
  • 1Laboratory of Bioengineering, Institute of Biochemistry, After H. Buniatyan of the NAS of Armenia, 5/1 Paruyr Sevak Street, Yerevan 0014, Armenia
  • 2Laboratory of Biomedical Research, Institute of Biochemistry, after H. Buniatyan of the NAS of Armenia, 5/1 Paruyr Sevak Street, Yerevan 0014, Armenia
  • 3B.I. Stepanov Institute of Physics NAS of Belarus, 68-2 Nezavisimosti Avenue, Minsk 220072, Belarus
  • 4National Polytechnic University of Armenia, 105 Teryan Street, Yerevan 0009, Armenia
  • 5Science Medical Centre, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
  • show less
    DOI: 10.1142/S1793545824400029 Cite this Article
    Lusine Mkrtchyan, Torgom Seferyan, Marina Parkhats, Sergei Lepeshkevich, Boris Dzhagarov, Gagik Shmavonyan, Elena Tuchina, Valery Tuchin, Grigor Gyulkhandanyan. The role of singlet oxygen and hydroxyl radical in the photobleaching of meso-substituted cationic pyridyl porphyrins in the presence of folic acid[J]. Journal of Innovative Optical Health Sciences, 2024, 17(5): 2440002 Copy Citation Text show less
    References

    [1] Y. Zhang, C. Zhu, Z. Zhang, J. Zhao, Y. Yuan, S. Wang. Oxidation triggered formation of polydopamine-modified carboxymethyl cellulose hydrogel for anti-recurrence of tumor. Colloids Surf. B Biointerfaces., 207, 112025(2021).

    [2] Y. Zhang, I. Kim, Y. Lu, Y. Xu, D. G. Yu, W. Song. Intelligent poly(l-histidine)-based nanovehicles for controlled drug delivery. J. Control Release, 349, 963-982(2022).

    [3] M. Baydoun, O. Moralès, C. Frochot, C. Ludovic, B. Leroux, E. Thecua, L. Ziane, A. Grabarz, A. Kumar, C. de Schutter, P. Collinet, H. Azais, S. Mordon, N. Delhem. Photodynamic therapy using a new folate receptor-targeted photosensitizer on peritoneal ovarian cancer cells induces the release of extracellular vesicles with immunoactivating properties. J. Clin. Med., 9, 1185(2020).

    [4] J. M. Dąbrowski, R. van Eldik, C. D. Hubbard. Advances in Inorganic Chemistry, 343-394(2017).

    [5] T. K. Horne, M. J. Cronjé. Mechanistics and photo-energetics of macrocycles and photodynamic therapy: An overview of aspects to consider for research. Chem. Biol. Drug Des., 89, 221-242(2017).

    [6] K. Plaetzer, B. Krammer, J. Berlanda, F. Berr, T. Kiesslich. Photophysics and photochemistry of photodynamic therapy: Fundamental aspects. Lasers Med. Sci., 24, 259-268(2009).

    [7] H. P Lassalle. “Study of the photobleaching mechanisms of the 5,10,15,20-tetrakis(mhydroxyphenyl) bacteriochlorin (m-THPBC), in solution, in vitro and in vivo,”. Defended PhD thesis for Bioengineering, Université Henri Poincaré, Nancy, I, France(2005).

    [8] A. Khaled, O. Khalid, J. Mohamad. Photobleaching of Sn(IV) chlorine e6 dichloride trisodium salt in different environments. Afr. J. Biotechnol., 10, 9137(2011).

    [9] C. Linger, M. Lancel, M. Port. Evaluation of relative efficiency of PDT photosensitizers in producing hydroxyl radicals and singlet oxygen in aqueous media using a UV–visible spectroscopy pNDA dosage. J. Photochem. Photobiol. B: Biol., 241, 112664(2023).

    [10] H. Liu, P. J. H. Carter, A. C. Laan, R. Eelkema, A. G. Denkova. Singlet oxygen sensor green is not a suitable probe for 1O2 in the presence of ionizing radiation. Sci. Rep., 9, 8393(2019).

    [11] S. K. Sharma, M. R. Hamblin, J. Espada. Reactive Oxygen Species. Methods in Molecular Biology, 215-229(2021).

    [12] P. Nath, S. S. Hamadna, L. Karamchand, J. Foster, R. Kopelman, J. G. Amar, A. Ray. Intracellular detection of singlet oxygen using fluorescent nanosensors. Analyst, 146, 3933-3941(2021).

    [13] A. Maity, R. Ahmad. Reactive Oxygen Species, 1-20(2022). http://dx.doi.org/10.5772/intechopen.99902

    [14] Q. Zheng, S. Jockusch, Z. Zhou, S. C. Blanchard. The contribution of reactive oxygen species to the photobleaching of organic fluorophores. Photochem. Photobiol., 90, 448-454(2014).

    [15] F. Kaneez, M. Nusrat, L. Suaib. Quenching of singlet oxygen by natural and synthetic antioxidants and assessment of electronic UV/Visible absorption spectra for alleviating or enhancing the efficacy of photodynamic therapy. Biomed. Res. Ther., 3, 514-527(2016).

    [16] C. Pierlot, V. Nardello-Rataj, J. M. Aubry, S. Nonell, C. Flors. Singlet Oxygen Applications in Biosciences and Nanosciences, 64-73(2016).

    [17] D. Aerssens, E. Cadoni, L. Tack, A. Madder. A photosensitized singlet oxygen (1O2) toolbox for bio-organic applications: Tailoring 1O2 generation for DNA and protein labelling, Targeting and Biosensing. Molecules, 27, 778(2022).

    [18] A. Stallivieri, L. Colombeau, G. Jetpisbayeva, A. Moussaron, B. Myrzakhmetov, P. Arnoux, C. Frochot. Folic acid conjugates with photosensitizers for cancer targeting in photodynamic therapy: Synthesis and photophysical properties. Bioorg. Med. Chem., 25, 1-10(2017).

    [19] Y. Shulpekova, V. Nechaev, S. Kardasheva, A. Sedova, A. Kurbatova, E. Bueverova, A. Kopylov, K. Malsagova, J. C. Dlamini, V. Ivashkin. The concept of folic acid in health and disease. Molecules, 26, 3731(2021).

    [20] J. Holm, S. I. Hansen. Characterization of soluble folate receptors (folate binding proteins) in humans. Biological roles and clinical potentials in infection and malignancy. Biochim. Biophys. Acta Proteins Proteom., 1868, 140466(2020).

    [21] Y. Xu, J. Xu, X. Hu, X. Xia, Q. Dong, Z. Liu, Z. Chen, W. Tan. Zinc-substituted hemoglobin with specific drug binding sites and fatty acid resistance ability for enhanced photodynamic therapy. Nano Res., 12, 1880-1887(2019).

    [22] S. Tada-Oikawa, S. Oikawa, J. Hirayama, K. Hirakawa, S. Kawanishi. DNA damage and apoptosis induced by photosensitization of 5,10,15,20-Tetrakis (N-methyl-4-pyridyl)-21H,23H-porphyrin via singlet oxygen generation. Photochem. Photobiol., 85, 1391-1399(2009).

    [23] A. G. Gyulkhandanyan, M. H. Paronyan, A. G. Gyulkhandanyan, K. R. Ghazaryan, M. V. Parkhats, B. M. Dzhagarov, M. V. Korchenova, E. N. Lazareva, E. S. Tuchina, G. V. Gyulkhandanyan, V. V. Tuchin. Meso-substituted cationic 3- and 4-N-Pyridylporphyrins and their Zn(II) derivatives for antibacterial photodynamic therapy. J. Innov. Opt. Health Sci., 15, 2142007-1-16(2022).

    [24] V. N. Madakyan, R. K. Kazaryan, M. A. Khachatryan, A. S. Stepanyan, T. S. Kurtikyan, M. B. Ordyan. Synthesis of new water-soluble cationic porphyrins. Khimiya heterociklicheskikh soedinenii (Russ.), 2, 212-216(1986).

    [25] A. G. Tovmasyan, R. K. Ghazaryan, L. Sahakyan, G. Gasparyan, N. Babayan, G. Gyulkhandanyan. Synthesis and anticancer activity of new water-soluble cationic metalloporphyrins. Technical Abstract Summaries in European Conf. on Biomedical Optics, 71-72(2007).

    [26] A. G. Tovmasyan, N. S. Babayan, L. A. Sahakyan, A. G. Shakhatuni, G. H. Gasparyan, R. M. Aroutiounian, R. K. Ghazaryan. Synthesis and in vitro anticancer activity of water-soluble cationic pyridylporphyrins and their metallocomplexes. J. Porphyr. Phthalocyan., 12, 1100-1110(2008).

    [27] V. V. Tuchin, D. Zhu, E. A. Genina. Handbook of Tissue Optical Clearing: New Prospects in Optical Imaging(2022).

    [28] A. Jaafar, M. E. Darvin, V. V. Tuchin, M. Veres. Confocal Raman micro-spectroscopy for discrimination of glycerol diffusivity in ex vivo porcine dura mater. Life, 12, 1534(2022).

    [29] D. K. Tuchina, I. G. Meerovich, O. A. Sindeeva, V. V. Zherdeva, A. P. Savitsky, A. A. Bogdanov, V. V. Tuchin. Magnetic resonance contrast agents in optical clearing: Prospects for multimodal tissue imaging. J. Biophotonics, 13, e201960249(2020).

    [30] L. Pires, V. Demidov, B. C. Wilson, A. G. Salvio, L. Moriyama, V. S. Bagnato, I. A. Vitkin, C. Kurachi. Dual-agent photodynamic therapy with optical clearing eradicates pigmented melanoma in preclinical tumor models. Cancers (Basel), 12, 1-17(2020).

    [31] G. V. Gyulkhandanyan, A. A. Sargsyan, M. H. Paronyan, M. A. Sheyranyan. Absorption and fluorescence spectra parameters of cationic porphyrins for photodynamic therapy of tumors. Biol. J. Armenia, 3, 72-75(2020).

    [32] M. K. Off, A. E. Steindal, A. C. Porojnicu, A. Juzeniene, A. Vorobey, A. Johnsson, J. Moan. Ultraviolet photodegradation of folic acid. J. Photochem. Photobiol. B, 80, 47-55(2005).

    [33] V. S. Chirvony, V. A. Galievsky, N. N. Kruk, B. M. Dzhagarov, P.-Y. Turpin. Photophysics of cationic 5,10,15,20-tetrakis-(4-N-methylpyridyl) porphyrin bound to DNA, [poly(dA-dT)]2 and [poly(dG-dC)]2: On a possible charge transfer process between guanine and porphyrin in its excited singlet state. J. Photochem. Photobiol. B, 40, 154-162(1997).

    [34] V. A. Galievsky, A. S. Stasheuski, V. V. Kiselyov, A. I. Shabusov, M. V. Belkov, B. M. Dzhagarov. Laser NIR lifetime spectrometer with nanosecond time resolution. Instrum. Exp. Tech., 53, 568-574(2010).

    [35] S. V. Lepeshkevich, A. S. Stasheuski, M. V. Parkhats, V. A. Galievsky, B. M. Dzhagarov. Does photodissociation of molecular oxygen from myoglobin and hemoglobin yield singlet oxygen. J. Photochem. Photobiol. B: Biol., 120, 130-1411(2013).

    [36] P. K. Frederiksen, S. P. McIlroy, C. B. Nielsen, L. Nikolajsen, E. Skovsen, M. Jørgensen, K. V. Mikkelsen, P. R. Ogilby. Two-photon photosensitized production of singlet oxygen in water. J. Am. Chem. Soc., 127, 255(2005).

    [37] O. Shimizu, J. Watanabe, K. Imakubo, S. Naito. Absolute quantum yields and lifetimes of photosensitized phosphorescence of singlet oxygen O2 (1Δg) in air-saturated aqueous and organic solutions of phenalenone. Chem. Lett., 1, 67-68(1999).

    [38] J. Kaufmann, A. G. Schering, R. B. D’Agostino, L. Sullivan, J. Massaro. Wiley Encyclopedia of Clinical Trials(2007).

    [39] A. S. Stasheuski, V. A. Galievsky, V. N. Knyukshto, R. K. Ghazaryan, A. G. Gyulkhandanyan, G. V. Gyulkhandanyan, B. M. Dzhagarov. Water-soluble pyridyl cationic porphyrins: Fluorescent characteristics and photosensitized formation of singlet oxygen. J. Appl. Spectrosc., 80, 823-833(2013).

    [40] L. Mkrtchyan. Photobleaching of non-covalent complexes of folic acid and photosensitizers. Biol. J. Armenia, 74, 31-38(2022).

    [41] I. Kutsche, G. Gildehaus, D. Schuller, A. Schumpe. Oxygen solubilities in aqueous alcohol solutions. J. Chem. Eng. Data, 29, 286-287(1984).

    [42] J. B. Segur, H. E. Oberstar. Viscosity of glycerol and its aqueous solutions. Ind. Eng. Chem., 43, 2117-2120(1951).

    [43] B. M. Dzhagarov, E. S. Zharnikova, V. A. Galievsky, A. S. Stasheuski, M. V. Parkhats. Effect of a homogeneous dielectric medium on the luminescence of singlet oxygen. Russ. Phys. J., 64, 2008-2016(2022).

    [44] B. M. Dzhagarov, E. S. Jarnikova, M. V. Parkhats, A. S. Stasheuski. Dependence of the spontaneous emission of singlet oxygen on the refractive index and molecular polarizability of the surrounding dielectric media. Opt. Spectrosc., 116, 926-932(2014).

    [45] F. M. Cabrerizo, M. L. Dántola, G. Petroselli, A. L. Capparelli, A. H. Thomas, A. M. Braun, C. Lorente, E. Oliveros. Reactivity of conjugated and unconjugated pterins with singlet oxygen (O2(1Deltag)): Physical quenching and chemical reaction. Photochem. Photobiol., 83, 526-534(2007).

    [46] A. H. Thomas, C. Lorente, A. L. Capparelli, C. G. Martínez, A. M. Braun, E. P. Oliveros. Singlet oxygen (1Δg) production by pterin derivatives in aqueous solutions. Photochem. Photobiol. Sci., 2, 245-250(2003).

    [47] L. Chekulayeva, I. Shevchuk, V. Chekulayev, R. Jäälaid. Kinetic studies on the mechanism of haematoporphyrin derivative photobleaching. Proc. Est. Acad. Sci. Chem., 51, 49-70(2002).

    [48] K. Das, A. Dube, P. K. Gupta. A spectroscopic study of photobleaching of Chlorin p6 in different environments. Dyes Pigm., 64, 201-205(2005).

    [49] A. N. Bashkatov, E. A. Genina, Yu. P. Sinichkin, V. I. Kochubey, N. A. Lakodina, V. V. Tuchin. Glucose and mannitol diffusion in human dura mater. Biophys. J., 85, 3310-3318(2003).

    [50] T. Myllylä, V. Yu. Toronov, J. Claassen, V. Kiviniemi, V. V. Tuchin, V. V. Tuchin. Handbook of Optical Biomedical Diagnostics. Light-Tissue Interaction, 687-735(2016).

    [51] C. Berger, O. W. Sakowitz, K. L. Kiening, S. Schwab. Neurochemical monitoring of glycerol therapy in patients with ischemic brain edema. Stroke, 36, e4-e6(2005).

    [52] C. Y. Chang, P. H. Pan, J.-R. Li, Y. C. Ou, S. L. Liao, W. Y. Chen, Y. H. Kuan, C. J. Chen. Glycerol improves intracerebral hemorrhagic brain injury and associated kidney dysfunction in rats. Antioxidants, 10, 1-13(2021).

    [53] J. Wang, Y. Ren, L. J. Zhou, L. D. Kan, H. Fan, H. M. Fang. Glycerol infusion versus mannitol for cerebral edema: A systematic review and meta-analysis. Clin. Ther., 43, 637-649(2021).

    [54] M. Niwa, H. Oyama, M. Furuse, S. Takada, T. Kawai, Y. Ishikawa, H. Kuchiwaki, S. Inao, K. Ichimi, M. Shibayama. Effect of glycerol on blood flow distribution in tumoral and peritumoral brain tissue. Acta Neurochir. Suppl., 70, 162-164(1997).

    [55] K. Moulton, F. Lovell, E. Williams, P. Ryan, D. C. Lay, D. Jansen, S. Willard. Use of glycerol as an optical clearing agent for enhancing photonic transference and detection of Salmonella typhimurium through porcine skin. J. Biomed. Opt., 11, 054027(2006).

    [56] D. K. Tuchina, I. G. Meerovich, O. A. Sindeeva, V. V. Zherdeva, N. I. Kazachkina, I. D. Solov’ev, A. P. Savitsky, A. A. Bogdanov, V. V. Tuchin. Prospects for multimodal visualisation of biological tissues using fluorescence imaging. Quantum Electron., 51, 104-117(2021).

    [57] H. Seo, E. Kim, H. Jung, Y. J. Lim, J. W. Kim, C. K. Park, Y. B. Se, Y. T. Jeon, J. W. Hwang, H. P. Park. A prospective randomized trial of the optimal dose of mannitol for intraoperative brain relaxation in patients undergoing craniotomy for supratentorial brain tumor resection. J. Neurosurg., 126, 1839-1846(2017).

    Lusine Mkrtchyan, Torgom Seferyan, Marina Parkhats, Sergei Lepeshkevich, Boris Dzhagarov, Gagik Shmavonyan, Elena Tuchina, Valery Tuchin, Grigor Gyulkhandanyan. The role of singlet oxygen and hydroxyl radical in the photobleaching of meso-substituted cationic pyridyl porphyrins in the presence of folic acid[J]. Journal of Innovative Optical Health Sciences, 2024, 17(5): 2440002
    Download Citation