[1] Y. Zhang, C. Zhu, Z. Zhang, J. Zhao, Y. Yuan, S. Wang. Oxidation triggered formation of polydopamine-modified carboxymethyl cellulose hydrogel for anti-recurrence of tumor. Colloids Surf. B Biointerfaces., 207, 112025(2021).
[2] Y. Zhang, I. Kim, Y. Lu, Y. Xu, D. G. Yu, W. Song. Intelligent poly(l-histidine)-based nanovehicles for controlled drug delivery. J. Control Release, 349, 963-982(2022).
[3] M. Baydoun, O. Moralès, C. Frochot, C. Ludovic, B. Leroux, E. Thecua, L. Ziane, A. Grabarz, A. Kumar, C. de Schutter, P. Collinet, H. Azais, S. Mordon, N. Delhem. Photodynamic therapy using a new folate receptor-targeted photosensitizer on peritoneal ovarian cancer cells induces the release of extracellular vesicles with immunoactivating properties. J. Clin. Med., 9, 1185(2020).
[4] J. M. Dąbrowski, R. van Eldik, C. D. Hubbard. Advances in Inorganic Chemistry, 343-394(2017).
[5] T. K. Horne, M. J. Cronjé. Mechanistics and photo-energetics of macrocycles and photodynamic therapy: An overview of aspects to consider for research. Chem. Biol. Drug Des., 89, 221-242(2017).
[6] K. Plaetzer, B. Krammer, J. Berlanda, F. Berr, T. Kiesslich. Photophysics and photochemistry of photodynamic therapy: Fundamental aspects. Lasers Med. Sci., 24, 259-268(2009).
[7] H. P Lassalle. “Study of the photobleaching mechanisms of the 5,10,15,20-tetrakis(mhydroxyphenyl) bacteriochlorin (m-THPBC), in solution, in vitro and in vivo,”. Defended PhD thesis for Bioengineering, Université Henri Poincaré, Nancy, I, France(2005).
[8] A. Khaled, O. Khalid, J. Mohamad. Photobleaching of Sn(IV) chlorine e6 dichloride trisodium salt in different environments. Afr. J. Biotechnol., 10, 9137(2011).
[9] C. Linger, M. Lancel, M. Port. Evaluation of relative efficiency of PDT photosensitizers in producing hydroxyl radicals and singlet oxygen in aqueous media using a UV–visible spectroscopy pNDA dosage. J. Photochem. Photobiol. B: Biol., 241, 112664(2023).
[10] H. Liu, P. J. H. Carter, A. C. Laan, R. Eelkema, A. G. Denkova. Singlet oxygen sensor green is not a suitable probe for 1O2 in the presence of ionizing radiation. Sci. Rep., 9, 8393(2019).
[11] S. K. Sharma, M. R. Hamblin, J. Espada. Reactive Oxygen Species. Methods in Molecular Biology, 215-229(2021).
[12] P. Nath, S. S. Hamadna, L. Karamchand, J. Foster, R. Kopelman, J. G. Amar, A. Ray. Intracellular detection of singlet oxygen using fluorescent nanosensors. Analyst, 146, 3933-3941(2021).
[14] Q. Zheng, S. Jockusch, Z. Zhou, S. C. Blanchard. The contribution of reactive oxygen species to the photobleaching of organic fluorophores. Photochem. Photobiol., 90, 448-454(2014).
[15] F. Kaneez, M. Nusrat, L. Suaib. Quenching of singlet oxygen by natural and synthetic antioxidants and assessment of electronic UV/Visible absorption spectra for alleviating or enhancing the efficacy of photodynamic therapy. Biomed. Res. Ther., 3, 514-527(2016).
[16] C. Pierlot, V. Nardello-Rataj, J. M. Aubry, S. Nonell, C. Flors. Singlet Oxygen Applications in Biosciences and Nanosciences, 64-73(2016).
[17] D. Aerssens, E. Cadoni, L. Tack, A. Madder. A photosensitized singlet oxygen (1O2) toolbox for bio-organic applications: Tailoring 1O2 generation for DNA and protein labelling, Targeting and Biosensing. Molecules, 27, 778(2022).
[18] A. Stallivieri, L. Colombeau, G. Jetpisbayeva, A. Moussaron, B. Myrzakhmetov, P. Arnoux, C. Frochot. Folic acid conjugates with photosensitizers for cancer targeting in photodynamic therapy: Synthesis and photophysical properties. Bioorg. Med. Chem., 25, 1-10(2017).
[19] Y. Shulpekova, V. Nechaev, S. Kardasheva, A. Sedova, A. Kurbatova, E. Bueverova, A. Kopylov, K. Malsagova, J. C. Dlamini, V. Ivashkin. The concept of folic acid in health and disease. Molecules, 26, 3731(2021).
[20] J. Holm, S. I. Hansen. Characterization of soluble folate receptors (folate binding proteins) in humans. Biological roles and clinical potentials in infection and malignancy. Biochim. Biophys. Acta Proteins Proteom., 1868, 140466(2020).
[21] Y. Xu, J. Xu, X. Hu, X. Xia, Q. Dong, Z. Liu, Z. Chen, W. Tan. Zinc-substituted hemoglobin with specific drug binding sites and fatty acid resistance ability for enhanced photodynamic therapy. Nano Res., 12, 1880-1887(2019).
[22] S. Tada-Oikawa, S. Oikawa, J. Hirayama, K. Hirakawa, S. Kawanishi. DNA damage and apoptosis induced by photosensitization of 5,10,15,20-Tetrakis (N-methyl-4-pyridyl)-21H,23H-porphyrin via singlet oxygen generation. Photochem. Photobiol., 85, 1391-1399(2009).
[23] A. G. Gyulkhandanyan, M. H. Paronyan, A. G. Gyulkhandanyan, K. R. Ghazaryan, M. V. Parkhats, B. M. Dzhagarov, M. V. Korchenova, E. N. Lazareva, E. S. Tuchina, G. V. Gyulkhandanyan, V. V. Tuchin. Meso-substituted cationic 3- and 4-N-Pyridylporphyrins and their Zn(II) derivatives for antibacterial photodynamic therapy. J. Innov. Opt. Health Sci., 15, 2142007-1-16(2022).
[24] V. N. Madakyan, R. K. Kazaryan, M. A. Khachatryan, A. S. Stepanyan, T. S. Kurtikyan, M. B. Ordyan. Synthesis of new water-soluble cationic porphyrins. Khimiya heterociklicheskikh soedinenii (Russ.), 2, 212-216(1986).
[25] A. G. Tovmasyan, R. K. Ghazaryan, L. Sahakyan, G. Gasparyan, N. Babayan, G. Gyulkhandanyan. Synthesis and anticancer activity of new water-soluble cationic metalloporphyrins. Technical Abstract Summaries in European Conf. on Biomedical Optics, 71-72(2007).
[26] A. G. Tovmasyan, N. S. Babayan, L. A. Sahakyan, A. G. Shakhatuni, G. H. Gasparyan, R. M. Aroutiounian, R. K. Ghazaryan. Synthesis and in vitro anticancer activity of water-soluble cationic pyridylporphyrins and their metallocomplexes. J. Porphyr. Phthalocyan., 12, 1100-1110(2008).
[27] V. V. Tuchin, D. Zhu, E. A. Genina. Handbook of Tissue Optical Clearing: New Prospects in Optical Imaging(2022).
[28] A. Jaafar, M. E. Darvin, V. V. Tuchin, M. Veres. Confocal Raman micro-spectroscopy for discrimination of glycerol diffusivity in ex vivo porcine dura mater. Life, 12, 1534(2022).
[29] D. K. Tuchina, I. G. Meerovich, O. A. Sindeeva, V. V. Zherdeva, A. P. Savitsky, A. A. Bogdanov, V. V. Tuchin. Magnetic resonance contrast agents in optical clearing: Prospects for multimodal tissue imaging. J. Biophotonics, 13, e201960249(2020).
[30] L. Pires, V. Demidov, B. C. Wilson, A. G. Salvio, L. Moriyama, V. S. Bagnato, I. A. Vitkin, C. Kurachi. Dual-agent photodynamic therapy with optical clearing eradicates pigmented melanoma in preclinical tumor models. Cancers (Basel), 12, 1-17(2020).
[31] G. V. Gyulkhandanyan, A. A. Sargsyan, M. H. Paronyan, M. A. Sheyranyan. Absorption and fluorescence spectra parameters of cationic porphyrins for photodynamic therapy of tumors. Biol. J. Armenia, 3, 72-75(2020).
[32] M. K. Off, A. E. Steindal, A. C. Porojnicu, A. Juzeniene, A. Vorobey, A. Johnsson, J. Moan. Ultraviolet photodegradation of folic acid. J. Photochem. Photobiol. B, 80, 47-55(2005).
[33] V. S. Chirvony, V. A. Galievsky, N. N. Kruk, B. M. Dzhagarov, P.-Y. Turpin. Photophysics of cationic 5,10,15,20-tetrakis-(4-N-methylpyridyl) porphyrin bound to DNA, [poly(dA-dT)]2 and [poly(dG-dC)]2: On a possible charge transfer process between guanine and porphyrin in its excited singlet state. J. Photochem. Photobiol. B, 40, 154-162(1997).
[34] V. A. Galievsky, A. S. Stasheuski, V. V. Kiselyov, A. I. Shabusov, M. V. Belkov, B. M. Dzhagarov. Laser NIR lifetime spectrometer with nanosecond time resolution. Instrum. Exp. Tech., 53, 568-574(2010).
[35] S. V. Lepeshkevich, A. S. Stasheuski, M. V. Parkhats, V. A. Galievsky, B. M. Dzhagarov. Does photodissociation of molecular oxygen from myoglobin and hemoglobin yield singlet oxygen. J. Photochem. Photobiol. B: Biol., 120, 130-1411(2013).
[36] P. K. Frederiksen, S. P. McIlroy, C. B. Nielsen, L. Nikolajsen, E. Skovsen, M. Jørgensen, K. V. Mikkelsen, P. R. Ogilby. Two-photon photosensitized production of singlet oxygen in water. J. Am. Chem. Soc., 127, 255(2005).
[37] O. Shimizu, J. Watanabe, K. Imakubo, S. Naito. Absolute quantum yields and lifetimes of photosensitized phosphorescence of singlet oxygen O2 (1Δg) in air-saturated aqueous and organic solutions of phenalenone. Chem. Lett., 1, 67-68(1999).
[38] J. Kaufmann, A. G. Schering, R. B. D’Agostino, L. Sullivan, J. Massaro. Wiley Encyclopedia of Clinical Trials(2007).
[39] A. S. Stasheuski, V. A. Galievsky, V. N. Knyukshto, R. K. Ghazaryan, A. G. Gyulkhandanyan, G. V. Gyulkhandanyan, B. M. Dzhagarov. Water-soluble pyridyl cationic porphyrins: Fluorescent characteristics and photosensitized formation of singlet oxygen. J. Appl. Spectrosc., 80, 823-833(2013).
[40] L. Mkrtchyan. Photobleaching of non-covalent complexes of folic acid and photosensitizers. Biol. J. Armenia, 74, 31-38(2022).
[41] I. Kutsche, G. Gildehaus, D. Schuller, A. Schumpe. Oxygen solubilities in aqueous alcohol solutions. J. Chem. Eng. Data, 29, 286-287(1984).
[42] J. B. Segur, H. E. Oberstar. Viscosity of glycerol and its aqueous solutions. Ind. Eng. Chem., 43, 2117-2120(1951).
[43] B. M. Dzhagarov, E. S. Zharnikova, V. A. Galievsky, A. S. Stasheuski, M. V. Parkhats. Effect of a homogeneous dielectric medium on the luminescence of singlet oxygen. Russ. Phys. J., 64, 2008-2016(2022).
[44] B. M. Dzhagarov, E. S. Jarnikova, M. V. Parkhats, A. S. Stasheuski. Dependence of the spontaneous emission of singlet oxygen on the refractive index and molecular polarizability of the surrounding dielectric media. Opt. Spectrosc., 116, 926-932(2014).
[45] F. M. Cabrerizo, M. L. Dántola, G. Petroselli, A. L. Capparelli, A. H. Thomas, A. M. Braun, C. Lorente, E. Oliveros. Reactivity of conjugated and unconjugated pterins with singlet oxygen (O2(1Deltag)): Physical quenching and chemical reaction. Photochem. Photobiol., 83, 526-534(2007).
[46] A. H. Thomas, C. Lorente, A. L. Capparelli, C. G. Martínez, A. M. Braun, E. P. Oliveros. Singlet oxygen (1Δg) production by pterin derivatives in aqueous solutions. Photochem. Photobiol. Sci., 2, 245-250(2003).
[47] L. Chekulayeva, I. Shevchuk, V. Chekulayev, R. Jäälaid. Kinetic studies on the mechanism of haematoporphyrin derivative photobleaching. Proc. Est. Acad. Sci. Chem., 51, 49-70(2002).
[48] K. Das, A. Dube, P. K. Gupta. A spectroscopic study of photobleaching of Chlorin p6 in different environments. Dyes Pigm., 64, 201-205(2005).
[49] A. N. Bashkatov, E. A. Genina, Yu. P. Sinichkin, V. I. Kochubey, N. A. Lakodina, V. V. Tuchin. Glucose and mannitol diffusion in human dura mater. Biophys. J., 85, 3310-3318(2003).
[50] T. Myllylä, V. Yu. Toronov, J. Claassen, V. Kiviniemi, V. V. Tuchin, V. V. Tuchin. Handbook of Optical Biomedical Diagnostics. Light-Tissue Interaction, 687-735(2016).
[51] C. Berger, O. W. Sakowitz, K. L. Kiening, S. Schwab. Neurochemical monitoring of glycerol therapy in patients with ischemic brain edema. Stroke, 36, e4-e6(2005).
[52] C. Y. Chang, P. H. Pan, J.-R. Li, Y. C. Ou, S. L. Liao, W. Y. Chen, Y. H. Kuan, C. J. Chen. Glycerol improves intracerebral hemorrhagic brain injury and associated kidney dysfunction in rats. Antioxidants, 10, 1-13(2021).
[53] J. Wang, Y. Ren, L. J. Zhou, L. D. Kan, H. Fan, H. M. Fang. Glycerol infusion versus mannitol for cerebral edema: A systematic review and meta-analysis. Clin. Ther., 43, 637-649(2021).
[54] M. Niwa, H. Oyama, M. Furuse, S. Takada, T. Kawai, Y. Ishikawa, H. Kuchiwaki, S. Inao, K. Ichimi, M. Shibayama. Effect of glycerol on blood flow distribution in tumoral and peritumoral brain tissue. Acta Neurochir. Suppl., 70, 162-164(1997).
[55] K. Moulton, F. Lovell, E. Williams, P. Ryan, D. C. Lay, D. Jansen, S. Willard. Use of glycerol as an optical clearing agent for enhancing photonic transference and detection of Salmonella typhimurium through porcine skin. J. Biomed. Opt., 11, 054027(2006).
[56] D. K. Tuchina, I. G. Meerovich, O. A. Sindeeva, V. V. Zherdeva, N. I. Kazachkina, I. D. Solov’ev, A. P. Savitsky, A. A. Bogdanov, V. V. Tuchin. Prospects for multimodal visualisation of biological tissues using fluorescence imaging. Quantum Electron., 51, 104-117(2021).
[57] H. Seo, E. Kim, H. Jung, Y. J. Lim, J. W. Kim, C. K. Park, Y. B. Se, Y. T. Jeon, J. W. Hwang, H. P. Park. A prospective randomized trial of the optimal dose of mannitol for intraoperative brain relaxation in patients undergoing craniotomy for supratentorial brain tumor resection. J. Neurosurg., 126, 1839-1846(2017).