• Photonics Research
  • Vol. 9, Issue 1, B1 (2021)
Qiang Cai1、†, Ya Guo1、2、†, Pu Li1、3、4、*, Adonis Bogris5, K. Alan Shore6, Yamei Zhang7, and Yuncai Wang3
Author Affiliations
  • 1Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
  • 2School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710072, China
  • 3School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • 4Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200444, China
  • 5Department of Informatics and Computer Engineering, University of West Attica, Athens 12243, Greece
  • 6School of Electronic Engineering, Bangor University, Wales LL57 1UT, UK
  • 7Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • show less
    DOI: 10.1364/PRJ.409114 Cite this Article Set citation alerts
    Qiang Cai, Ya Guo, Pu Li, Adonis Bogris, K. Alan Shore, Yamei Zhang, Yuncai Wang. Modulation format identification in fiber communications using single dynamical node-based photonic reservoir computing[J]. Photonics Research, 2021, 9(1): B1 Copy Citation Text show less
    References

    [1] A. Nag, M. Tornatore, B. Mukherjee. Optical network design with mixed line rates and multiple modulation formats. J. Lightwave Technol., 28, 466-475(2010).

    [2] S. J. Yoo, A. Lord, M. Jinno, O. Gerstel. Elastic optical networking: a new dawn for the optical layer?. IEEE Commun. Mag., 50, s12-s20(2012).

    [3] T. Zhang, J. Wang, Q. Liu, J. Z. Zhou, J. Dai, X. Han, Y. Zhou, K. Xu. Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks. Photon. Res., 7, 368-380(2019).

    [4] Y. Q. Chang, H. Wu, C. Zhao, L. Shen, S. N. Fu, M. Tang. Distributed Brillouin frequency shift extraction via a convolutional neural network. Photon. Res., 8, 690-697(2020).

    [5] Z. Pan, C. Yu, A. E. Willner. Optical performance monitoring for the next generation optical communication networks. Opt. Fiber Technol., 16, 20-45(2010).

    [6] R. Borkowski, D. Zibar, I. T. Monroy. Anatomy of a digital coherent receiver. IEICE Trans. Commun., E97-B, 1528-1536(2014).

    [7] E. E. Azzouz, A. K. Nandi. Automatic Modulation Recognition of Communication Signals(1996).

    [8] O. A. Dobre, A. Abdi, Y. Bar-Ness, W. Su. A survey of automatic modulation classification techniques: classical approaches and new trends. IET Commun., 1, 137-156(2007).

    [9] A. K. Nandi, E. E. Azzouz. Algorithms for automatic modulation recognition of communication signals. IEEE Trans. Commun., 46, 431-436(1998).

    [10] C. S. Park, J. H. Choi, S. P. Nah, W. Jang, D. Y. Kim. Automatic modulation recognition of digital signals using wavelet features and SVM. 10th International Conference on Advanced Communication Technology, 387-390(2008).

    [11] F. N. Khan, Y. Zhou, A. P. T. Lau, C. Lu. Modulation format identification in heterogeneous fiber-optic networks using artificial neural networks. Opt. Express, 20, 12422-12431(2012).

    [12] M. L. D. Wong, A. K. Nandi. Automatic digital modulation recognition using artificial neural network and genetic algorithm. Signal Process., 84, 351-365(2004).

    [13] T. J. O’shea, T. Roy, T. C. Clancy. Over the air deep learning based radio signal classification. IEEE J. Sel. Top. Signal Process., 12, 168-179(2018).

    [14] D. Wang, M. Zhang, J. Li, Z. Li, J. Li, C. Song, X. Chen. Intelligent constellation diagram analyzer using convolutional neural network-based deep learning. Opt. Express, 25, 17150-17166(2017).

    [15] L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, I. Fischer. Information processing using a single dynamical node as complex system. Nat. Commun., 2, 468(2011).

    [16] D. Brunner, M. C. Soriano, C. R. Mirasso, I. Fischer. Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun., 4, 1364(2013).

    [17] L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mirasso, I. Fischer. Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. Opt. Express, 20, 3241-3249(2012).

    [18] R. M. Nguimdo, G. Verschaffelt, J. Danckaert, G. Van der Sande. Fast photonic information processing using semiconductor lasers with delayed optical feedback: role of phase dynamics. Opt. Express, 22, 8672-8686(2014).

    [19] L. Larger, A. Baylón-Fuentes, R. Martinenghi, V. S. Udaltsov, Y. K. Chembo, M. Jacquot. High-speed photonic reservoir computing using a time-delay-based architecture: million words per second classification. Phys. Rev. X, 7, 011015(2017).

    [20] Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, S. Massar. Optoelectronic reservoir computing. Sci. Rep., 2, 287(2012).

    [21] R. Martinenghi, S. Rybalko, M. Jacquot, Y. K. Chembo, L. Larger. Photonic nonlinear transient computing with multiple-delay wavelength dynamics. Phys. Rev. Lett., 108, 244101(2012).

    [22] F. Duport, B. Schneider, A. Smerieri, M. Haelterman, S. Massar. All-optical reservoir computing. Opt. Express, 20, 22783-22795(2012).

    [23] K. Hicke, M. A. Escalona-Morán, D. Brunner, M. C. Soriano, I. Fischer, C. R. Mirasso. Information processing using transient dynamics of semiconductor lasers subject to delayed feedback. IEEE J. Sel. Top. Quantum Electron., 19, 1501610(2013).

    [24] A. Dejonckheere, F. Duport, A. Smerieri, L. Fang, J. L. Oudar, M. Haelterman, S. Massar. All-optical reservoir computer based on saturation of absorption. Opt. Express, 22, 10868-10881(2014).

    [25] R. M. Nguimdo, G. Verschaffelt, J. Danckaert, G. Van der Sande. Simultaneous computation of two independent tasks using reservoir computing based on a single photonic nonlinear node with optical feedback. IEEE Trans. Neural Netw. Learn. Syst., 26, 3301-3307(2015).

    [26] Q. Vinckier, F. Duport, A. Smerieri, K. Vandoorne, P. Bienstman, M. Haelterman, S. Massar. High performance photonic reservoir computer based on a coherently driven passive cavity. Optica, 2, 438-446(2015).

    [27] J. Bueno, D. Brunner, M. C. Soriano, I. Fischer. Conditions for reservoir computing performance using semiconductor lasers with delayed optical feedback. Opt. Express, 25, 2401-2412(2017).

    [28] J. Vatin, D. Rontani, M. Sciamanna. Experimental reservoir computing using VCSEL polarization dynamics. Opt. Express, 27, 18579-18584(2019).

    [29] X. Tan, Y. Hou, Z. Wu, G. Xia. Parallel information processing by a reservoir computing system based on a VCSEL subject to double optical feedback and optical injection. Opt. Express, 27, 26070-26079(2019).

    [30] Y. Hou, G. Xia, W. Yang, D. Wang, E. Jayaprasath, Z. Jiang, C. Hu, Z. Wu. Prediction performance of reservoir computing system based on a semiconductor laser subject to double optical feedback and optical injection. Opt. Express, 26, 10211-10219(2018).

    [31] J. Qin, Q. Zhao, D. Xu, H. Yin, Y. Chang, D. Huang. Optical packet header identification utilizing an all-optical feedback chaotic reservoir computing. Mod. Phys. Lett. B, 30, 1650199(2016).

    [32] J. Qin, Q. Zhao, H. Yin, Y. Jin, C. Liu. Numerical simulation and experiment on optical packet header recognition utilizing reservoir computing based on optoelectronic feedback. IEEE Photon. J., 9, 7901311(2017).

    [33] A. Argyris, J. Bueno, I. Fischer. Photonic machine learning implementation for signal recovery in optical communications. Sci. Rep., 8, 8487(2018).

    [34] A. Argyris, J. Bueno, I. Fischer. PAM-4 transmission at 1550  nm using photonic reservoir computing post-processing. IEEE Access, 7, 37017-37025(2019).

    [35] H. Jaeger. Short term memory in echo state networks. GMD Rep., 152, 60(2002).

    [36] A. Wang, Y. Wang, H. He. Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback. IEEE Photon. Technol. Lett., 20, 1633-1635(2008).

    [37] A. Wang, Y. Wang, J. Wang. Route to broadband chaos in a chaotic laser diode subject to optical injection. Opt. Lett., 34, 1144-1146(2009).

    [38] L. Appeltant, G. Van der Sande, J. Danckaert, I. Fischer. Constructing optimized binary masks for reservoir computing with delay systems. Sci. Rep., 4, 3629(2015).

    [39] M. C. Soriano, S. Ortín, D. Brunner, L. Larger, C. R. Mirasso, I. Fischer, L. Pesquera. Optoelectronic reservoir computing: tackling noise-induced performance degradation. Opt. Express, 21, 12-20(2013).

    [40] J. Nakayama, K. Kanno, A. Uchida. Laser dynamical reservoir computing with consistency: an approach of a chaos mask signal. Opt. Express, 24, 8679-8692(2016).

    [41] R. Lang, K. Kobayashi. External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron., 16, 347-355(1980).

    [42] S. Okada, M. Ohzeki, S. Taguchi. Efficient partition of integer optimization problems with one-hot encoding. Sci. Rep., 9, 13036(2019).

    [43] Q. Xiang, Y. Yang, Q. Zhang, Y. Yao. Joint and accurate OSNR estimation and modulation format identification scheme using the feature-based ANN. IEEE Photon. J., 11, 7204211(2019).

    [44] Y. Bengio, Y. Grandvalet. No unbiased estimator of the variance of K-fold cross-validation. J. Mach. Learn. Res., 5, 1089-1105(2004).

    [45] P. Li, Q. Cai, J. Zhang, B. Xu, Y. Liu, A. Bogirs, K. A. Shore, Y. Wang. Observation of flat chaos generation using an optical feedback multi-mode laser with a band-pass filter. Opt. Express, 27, 17859-17867(2019).

    [46] A. Zhao, N. Jiang, C. Xue, J. Tang, K. Qiu. Wideband complex- enhanced chaos generation using a semiconductor laser subject to delay-interfered self-phase-modulated feedback. Opt. Express, 27, 12336-12348(2019).

    [47] B. G. Mobasseri. Digital modulation classification using constellation shape. Signal Process., 80, 251-277(2000).

    [48] L. Guesmi, A. M. Ragheb, H. Fathallah, M. Menif. Experimental demonstration of simultaneous modulation format/symbol rate identification and optical performance monitoring for coherent optical systems. J. Lightwave Technol., 36, 2230-2239(2017).

    [49] W. S. Saif, A. M. Ragheb, H. E. Seleem, T. A. Alshawi, S. A. Alshebeili. Modulation format identification in mode division multiplexed optical networks. IEEE Access, 7, 156207(2019).

    [50] I. Park, I. Fischer, W. Elsäßer. Highly nondegenerate four-wave mixing in a tunable dual-mode semiconductor laser. Appl. Phys. Lett., 84, 5189-5191(2004).

    CLP Journals

    [1] Li Gao, Yang Chai, Darko Zibar, Zongfu Yu. Deep learning in photonics: introduction[J]. Photonics Research, 2021, 9(8): DLP1

    Qiang Cai, Ya Guo, Pu Li, Adonis Bogris, K. Alan Shore, Yamei Zhang, Yuncai Wang. Modulation format identification in fiber communications using single dynamical node-based photonic reservoir computing[J]. Photonics Research, 2021, 9(1): B1
    Download Citation