• Optoelectronic Technology
  • Vol. 44, Issue 1, 6 (2024)
Wenzhu WU, Zengzhou YANG, Zugang LIU, Jiawei JING..., Ranran HAN, Jinchen HAN, Zhijie XIA, Hong ZHAO and Xin YAO|Show fewer author(s)
Author Affiliations
  • College of Optical and Electronic Technology,China Jiliang University, Hangzhou 310018, CHN
  • show less
    DOI: 10.12450/j.gdzjs.202401002 Cite this Article
    Wenzhu WU, Zengzhou YANG, Zugang LIU, Jiawei JING, Ranran HAN, Jinchen HAN, Zhijie XIA, Hong ZHAO, Xin YAO. Method Synthesis of CuIn0.7Ga0.3S2 Nanoparticles by Injection Method and Application in CIGSSe Solar Cells[J]. Optoelectronic Technology, 2024, 44(1): 6 Copy Citation Text show less
    References

    [1] Bagher A M, Vahid M M A, Mohsen M. Types of solar cells and application[J]. American Journal of Optics and Photonics, 3, 94-113(2015).

    [2] Ramanujam J, Singh U P. Copper indium gallium selenide based solar cells——A review[J]. Energy and Environmental Science, 10, 1306-1319(2017).

    [3] Dhere N G. Present status and future prospects of CIGSS thin film solar cells[J]. Solar Energy Materials and Solar Cells, 90, 2181-2190(2006).

    [4] Nakamura M, Yamaguchi K, Kimoto Y et al. Cd-free Cu (In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%[J]. IEEE Journal of Photovoltaics, 9, 1863-1867(2019).

    [5] Mcleod S M, Hages C J, Carter N J et al. Synthesis and characterization of 15% efficient CIGSSe solar cells from nanoparticle inks[J]. Progress in Photovoltaics:Research and Applications, 23, 1550-1556(2015).

    [6] Brown G, Stone P, Woodruff J et al. Device characteristics of a 17.1% efficient solar cell deposited by a non-vacuum printing method on flexible foil[C], -003233(2012).

    [7] Zhang T, Yang Y, Liu D et al. High efficiency solution-processed thin-film Cu (In, Ga)(Se, S)2 solar cells[J]. Energy & Environmental Science, 9, 3674-3681(2016).

    [8] Ahn S J, Kim K, Cho A et al. CuInSe2 (CIS) thin films prepared from amorphous Cu‑In‑Se nanoparticle precursors for solar cell application[J]. ACS Applied Materials & Interfaces, 4, 1530-1536(2012).

    [9] Altaf C T, Sankir M, Sankia N D. Synthesis of Cu (In, Ga) S2 nanoparticles via hot-injection method and incorporation with 3D-ZnO/In2S3 heterojunction photoanode for enhanced optical and photoelectrochemical properties[J]. Materials Letters, 304, 130602(2021).

    [10] Zhang Q, Wang J, Jiang Z et al. Au‑Cu alloy bridged synthesis and optoelectronic properties of Au@ CuInSe2 core‑shell hybrid nanostructures[J]. Journal of Materials Chemistry, 22, 1765-1769(2012).

    [11] Pan D, An L, Sun Z et al. Synthesis of Cu‑In‑S ternary nanocrystals with tunable structure and composition[J]. Journal of the American Chemical Society, 130, 5620-5621(2008).

    [12] Vahidshad Y, Nawaz Tahir M, Iraji Zad A et al. Structural and optical study of Ga3+ substitution in CuInS2 nanoparticles synthesized by a one-pot facile method[J]. The Journal of Physical Chemistry C, 118, 24670-24679(2014).

    [13] Vahidshad Y, Tahir M N, Mirkazemi S M et al. One-pot thermolysis synthesis of CuInS2 nanoparticles with chalcopyrite-wurtzite polytypism structure[J]. Journal of Materials Science:Materials in Electronics, 26, 8960-8972(2015).

    Wenzhu WU, Zengzhou YANG, Zugang LIU, Jiawei JING, Ranran HAN, Jinchen HAN, Zhijie XIA, Hong ZHAO, Xin YAO. Method Synthesis of CuIn0.7Ga0.3S2 Nanoparticles by Injection Method and Application in CIGSSe Solar Cells[J]. Optoelectronic Technology, 2024, 44(1): 6
    Download Citation