• Journal of Innovative Optical Health Sciences
  • Vol. 15, Issue 6, 2240009 (2022)
Yuting Zhang1、2, Guojing Li3, Jiong Li2、4、*, Ming Wu2, Xiaolong Liu1、2, and Jingfeng Liu1、2、5、**
Author Affiliations
  • 1School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
  • 2The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
  • 3Key Laboratory for Green Chemical Process of the Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. Chin
  • 4Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
  • 5Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou 350014, P. R. China
  • show less
    DOI: 10.1142/S1793545822400090 Cite this Article
    Yuting Zhang, Guojing Li, Jiong Li, Ming Wu, Xiaolong Liu, Jingfeng Liu. A novel BODIPY-based nano-photosensitizer with aggregation-induced emission for cancer photodynamic therapy[J]. Journal of Innovative Optical Health Sciences, 2022, 15(6): 2240009 Copy Citation Text show less
    References

    [1] A. E. O’Connor, W. M. Gallagher, A. T. Byrne. Porphyrin and nonporphyrin photosensitizers in oncology: Preclinical and clinical advances in photodynamic therapy. Photochem. Photobiol., 85, 1053-1074(2009).

    [2] Q. Zhang, J. He, W. Yu, Y. Li, Z. Liu, B. Zhou, Y. Liu. A promising anticancer drug: A photosensitizer based on the porphyrin skeleton. RSC Med. Chem., 11, 427-437(2020).

    [3] P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, J. Golab. Photodynamic therapy of cancer: An update. CA, Cancer J. Clin., 61, 250-281(2011).

    [4] O. J. Fakayode, N. Tsolekile, S. P. Songca, O. S. Oluwafemi. Applications of functionalized nanomaterials in photodynamic therapy. Biophys. Rev., 10, 49-67(2018).

    [5] E. J. Hong, D. G. Choi, M. S. Shim. Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharm. Sin. B, 6, 297-307(2016).

    [6] Z. Zhou, J. Song, L. Nie, X. Chen. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev., 45, 6597-6626(2016).

    [7] S. Liu, G. Feng, B. Z. Tang, B. Liu. Recent advances of AIE light-up probes for photodynamic therapy. Chem. Sci., 12, 6488-6506(2021).

    [8] H. Abrahamse, M. R. Hamblin. New photosensitizers for photodynamic therapy. Biochem. J., 473, 347-364(2016).

    [9] M. A. Rajora, J. W. H. Lou, G. Zheng. Advancing porphyrin’s biomedical utility via supramolecular chemistry. Chem. Soc. Rev., 46, 6433-6469(2017).

    [10] M. Lan, S. Zhao, W. Liu, C. Lee, W. Zhang, P. Wang. Photosensitizers for photodynamic therapy. Adv. Healthc. Mater., 8, 1900132(2019).

    [11] J. J. Schuitmaker, P. Baas, H. L. V. Leengoed, F. W. V. D. Meulen, W. M. Star, N. V. Zandwijk. Photodynamic therapy: A promising new modality for the treatment of cancer. J. Photochem. Photobiol. B, 34, 3-12(1996).

    [12] A. Juzeniene, Q. Peng, J. Moan. Milestones in the development of photodynamic therapy and fluorescence diagnosis. Photochem. Photobiol. Sci., 6, 1234-1245(2007).

    [13] H. Chen, Y. Qiu, D. Ding, H. Lin, W. Sun, G. D. Wang, W. Huang, W. Zhang, D. Lee, G. Liu, J. Xie, X. Chen. Gadolinium-encapsulated graphene carbon nanotheranostics for imaging-guided photodynamic therapy. Adv. Mater., 30, 1802748(2018).

    [14] J. Tian, B. Huang, M. Hasnainnawaz, W. Zhang. Recent advances of multi-dimensional porphyrin-based functional materials in photodynamic therapy. Coord. Chem. Rev., 420, 213410(2020).

    [15] A. Loudet, K. Burgess. BODIPY dyes and their derivatives: Syntheses and spectroscopic properties. Chem. Rev., 107, 4891-4932(2007).

    [16] J. Zhang, N. Wang, X. Ji, Y. Tao, J. Wang, W. Zhao. BODIPY-based fluorescent probes for biothiols. Chem. Eur. J., 26, 4172-4192(2020).

    [17] N. Boens, V. Leen, W. Dehaen. Fluorescent indicators based on BODIPY. Chem. Soc. Rev., 41, 1130-1172(2012).

    [18] L. Antina, A. A. Ksenofontov, A. Kazak, T. Usol, M. B. Berezin. Effect of ms-substitution on aggregation behavior and spectroscopic properties of BODIPY dyes in aqueous solution, Langmuir-Schaefer and poly(methyl methacrylate) thin films. Colloids Surf. A, Physicochem. Eng. Aspects, 618, 126449(2021).

    [19] S. Radunz, E. Andresen, C. Würth, A. Koerdt, U. Resch-Genger. Simple self-referenced luminescent pH sensors based on upconversion nanocrystals and pH-sensitive fluorescent BODIPY dyes. Anal. Chem., 91, 7756-7764(2019).

    [20] M. Zhu, P. Xing, Y. Zhou, L. Gong, J. Zhang, D. Qi, Y. Bian, H. Du, J. Jiang. Lysosome-targeting ratiometric fluorescent pH probes based on long-wavelength BODIPY. J. Mater. Chem. B, 6, 4422-4426(2018).

    [21] Y. Chen, W. Ai, X. Guo, Y. Li, Y. Ma, L. Chen, H. Zhang, T. Wang, X. Zhang, Z. Wang. Mitochondria-targeted polydopamine nanocomposite with AIE photosensitizer for image-guided photodynamic and photothermal tumor ablation. Small, 15, 1902352(2019).

    [22] J. Xie, Y. Wang, W. Choi, P. Jangili, Y. Ge, Y. Xu, J. Kang, L. Liu, B. Zhang, Z. Xie, J. He, N. Xie, G. Nie, H. Zhang, J. S. Kim. Overcoming barriers in photodynamic therapy harnessing nano-formulation strategies. Chem. Soc. Rev., 50, 9152-9201(2021).

    [23] R. Bonnett. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem. Soc. Rev., 24, 19-33(1995).

    [24] X. F. Zhang. BisBODIPY as PCT-based halogen free photosensitizers for highly efficient excited triplet state and singlet oxygen formation: Tuning the efficiency by different linking positions. Dyes Pigments, 146, 491-501(2017).

    [25] W. Wang, F. Wu, Q. Zhang, N. Zhou, M. Zhang, T. Zheng, Y. Li, B. Z. Tang. Aggregation-induced emission nanoparticles for single near-infrared light-triggered photodynamic and photothermal antibacterial therapy. ACS Nano, 16, 7961-7970(2022).

    [26] M. Yang, J. Deng, H. Su, S. Gu, J. Zhang, A. Zhong, F. Wu. Small organic molecule-based nanoparticles with red/near-infrared aggregation-induced emission for bioimaging and PDT/PTT synergistic therapy. Mater. Chem. Front., 5, 406-417(2021).

    [27] M. Hussain, A. M. El-Zohry, H. B. Gobeze, J. Zhao, F. D’Souza, O. F. Mohammed. Intramolecular energy and electron transfers in bodipy naphthalenediimide triads. J. Phys. Chem. A, 122, 6081-6088(2018).

    [28] Z. Xiong, X. Zhang, L. Liu, Q. Zhu, Z. Wang, H. Feng, Z. Qian. Achieving highly efficient aggregation-induced emission, reversible and irreversible photochromism by heavy halogen-regulated photophysics and D-A molecular pattern-controlled photochemistry of through-space conjugated luminogens. Chem. Sci., 12, 10710-10723(2021).

    [29] Y. Xu, C. Li, R. Xu, N. Zhang, Z. Wang, X. Jing, Z. Yang, D. Dang, P. Zhang, L. Meng. Tuning molecular aggregation to achieve highly bright AIE dots for NIR-II fluorescence imaging and NIR-I photoacoustic imaging. Chem. Sci., 11, 8157-8166(2020).

    [30] W. Che, G. Li, J. Zhang, Y. Geng, Z. Xie, D. Zhu, Z. Su. Exploiting aggregation induced emission and twisted intramolecular charge transfer in a BODIPY dye for selective sensing of fluoride in aqueous medium and living cells. J. Photochem. Photobiol. A, 358, 274-283(2018).

    [31] J. Yang, G. Li, W. Che, Y. Liu, M. R. Bryce. A neutral dinuclear Ir(III) complex for anti-counterfeiting and data encryption. Chem. Commun., 53, 3022-3025(2017).

    [32] W. Shao, C. Yang, F. Li, J. Wu, N. Wang, Q. Ding, J. Gao, D. Ling. Molecular design of conjugated small molecule nanoparticles for synergistically enhanced PTT/PDT. Nano-Micro Lett., 12, 147(2020).

    [33] X. Cai, B. Liu, M. Pang, J. Lin. Interfacially synthesized Fe-soc-MOF nanoparticles combined with ICG for photothermal/photodynamic therapy. Dalton Trans., 47, 16329-16336(2018).

    [34] N. K. Pandey, W. Xiong, L. Wang, W. Chen, B. Bui, J. Yang, E. Amador, M. Chen, C. Xing, A. A. Athavale, Y. Hao, W. Feizi, L. Lumata. Aggregation-induced emission luminogens for highly effective microwave dynamic therapy. Bioact. Mater., 7, 112-125(2022).

    [35] X. Chen, J. Liu, Y. Li, N. K. Pandey, T. Chen, L. Wang, E. H. Amador, W. Chen, F. Liu, E. Xiao, W. Chen. Study of copper-cysteamine based X-ray induced photodynamic therapy and its effects on cancer cell proliferation and migration in a clinical mimic setting. Bioact. Mater., 7, 504-514(2022).

    [36] S. Shrestha, J. Wu, B. Sah, A. Vanasse, L. N. Cooper, L. Ma, G. Li, H. Zheng, W. Chen, M. P. Antosh. X-ray induced photodynamic therapy with copper-cysteamine nanoparticles in mice tumors. Proc. Natl. Acad. Sci. USA, 116, 16823-16828(2019).

    Yuting Zhang, Guojing Li, Jiong Li, Ming Wu, Xiaolong Liu, Jingfeng Liu. A novel BODIPY-based nano-photosensitizer with aggregation-induced emission for cancer photodynamic therapy[J]. Journal of Innovative Optical Health Sciences, 2022, 15(6): 2240009
    Download Citation