• Journal of Inorganic Materials
  • Vol. 36, Issue 8, 789 (2021)
Jiang LI1, Jiyang DING1、2, and Xinyou HUANG2
Author Affiliations
  • 11. Key Laboratory of Transparent Opto-Functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
  • 22. School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
  • show less
    DOI: 10.15541/jim20200544 Cite this Article
    Jiang LI, Jiyang DING, Xinyou HUANG. Rare Earth Doped Gd2O2S Scintillation Ceramics [J]. Journal of Inorganic Materials, 2021, 36(8): 789 Copy Citation Text show less
    References

    [1] J GLODO, Y WANG, R SHAWGO et al. New developments in scintillators for security applications. Physics Procedia, 90, 285-290(2017).

    [2] P LECOQ. Development of new scintillators for medical applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 809, 130-139(2016).

    [3] T MARTIN, A KOCH, M NIKL. Scintillator materials for X-ray detectors and beam monitors. MRS Bulletin, 42, 451-457(2017).

    [4] M NIKL, A YOSHIKAWA. Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection. Advanced Optical Materials, 3, 463-481(2015).

    [5] J WEBER M. Inorganic scintillators: today and tomorrow. Journal of Luminescence, 100, 35-45(2002).

    [6] C W E VAN EIJK. Inorganic-scintillator development. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment, 460, 1-14(2001).

    [7] A LEMPICKI, C BRECHER, H LINGERTAT et al. A ceramic version of the LSO scintillator. IEEE Transactions on Nuclear Science, 55, 1148-1151(2008).

    [9] B MURRAY R, A MEYER. Scintillation response of activated inorganic crystals to various charged particles. Physical Review, 122, 815-826(1961).

    [10] A PAYNE S, J CHEREPY N, G HULL et al. Nonproportionality of scintillator detectors: theory and experiment. IEEE Transactions on Nuclear Science, 56, 2506-2512(2009).

    [11] R KIRKIN, V MIKHAILIB V, N VASILEV A. Recombination of correlated electron-hole pairs with account of hot capture with emission of optical phonons. IEEE Transactions on Nuclear Science, 59, 2057-2064(2012).

    [12] N VASILEV A, V GEKTIN A. Multiscale approach to estimation of scintillation characteristics. IEEE Transactions on Nuclear Science, 61, 235-245(2013).

    [13] M NIKL, V LAGUTA V, A VEDDA. Complex oxide scintillators: material defects and scintillation performance. Physica Status Solidi B, 245, 1701-1722(2008).

    [14] P LECOQ, A GEKTIN, M KORZHIK. Scintillation Mechanisms in Inorganic Scintillators. Berlin: Springer, 125-174(2017).

    [15] M NIKL, J PEJCHAL, E MIHOKOVA et al. Antisite defect-free Lu3(GaxAl1-x)5O12:Pr scintillator. Applied Physics Letters, 88, 141916(2006).

    [16] A GEKTIN, M KORZHIK. Inorganic Scintillators for Detector Systems. Berlin: Springer, 20-77(2017).

    [17] W COLTMAN J, H MARSHALL F. Some characteristics of the photo-multiplier radiation detector. Physical Review, 72, 528(1947).

    [18] C DUJARDIN, E AUFFRAY, E BOURRET-COURCHESNE et al. Needs, trends, and advances in inorganic scintillators. IEEE Transactions on Nuclear Science, 65, 1977-1997(2018).

    [19] R HOFSTADTER. The detection of gamma-rays with thallium- activated sodium iodide crystals. Physical Review, 75, 796-810(1949).

    [20] W VANSCIVER, R HOFSTADTER. Scintillations in thallium- activated CaI2 and CsI. Physical Review, 84, 1062-1063(1951).

    [21] J WEBER M, R MONCHAMP R. Luminescence of Bi4Ge3O12: spectral and decay properties. Journal of Applied Physics, 44, 5495-5499(1973).

    [22] N ERSHOV N, G ZAKHAROV N, A RODNYI P. Spectral- kinetic study of the intrinsic-luminescence characteristics of a fluorite-type crystal. Optics and Spectroscopy, 53, 51-54(1982).

    [23] E SAKAI. Recent measurements on scintillator-photodetector systems. IEEE Transactions on Nuclear Science, 34, 418-422(1987).

    [24] A BESSIERE, P DORENBOS, C W E VAN EIJK et al. Luminescence and scintillation properties of the small band gap compound LaI3:Ce3+. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment, 537, 22-26(2005).

    [25] J CHEREPY N, A PAYNE S, J ASZTALOS S et al. Scintillators with potential to supersede lanthanum bromide. IEEE Transactions on Nuclear Science, 56, 873-880(2009).

    [26] G GUNDIAH, G BIZARRI, M HANRAHAN S et al. Structure and scintillation of Eu2+-activated solid solutions in the BaBr2-BaI2 system. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment, 652, 234-237(2011).

    [27] I HOLL, E LORENZ, G MAGERAS. A measurement of the light yield of common inorganic scintillators. IEEE Transactions on Nuclear Science, 35, 105-109(1988).

    [28] A ANNENKOV A, V KORZHIK M, P LECOQ. Lead tungstate scintillation material. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers, Detectors and Associated Equipment, 490, 30-50(2002).

    [29] C W E VAN EIJK. Inorganic scintillators in medical imaging. Physics in Medicine & Biology, 47, R85(2002).

    [30] P DORENBOS, M MAISMAN, C W E VAN EIJK et al. Scintillation properties of Y2SiO5: Pr crystals. Radiation Effects and Defects in Solids, 135, 325-328(1995).

    [31] K KAMADA, T YANAGIDA, T ENDO et al. 2 inch diameter single crystal growth and scintillation properties of Ce:Gd3Al2Ga3O12. Journal of Crystal Growth, 352, 88-90(2012).

    [32] J CHEREPY N, M SEELEY Z, A PAYNE S et al. Development of transparent ceramic Ce-doped gadolinium garnet gamma spectrometers. IEEE Transactions on Nuclear Science, 60, 2330-2335(2013).

    [33] M CONTL. State of the art and challenges of time-of-flight PET. Phys. Med.-Eur. J. Med. Phys., 25, 1-11(2009).

    [34] M NIKL. Wide band gap scintillation materials: progress in the technology and material understanding. Physica Status Solidi A, 178, 595-620(2000).

    [35] C WANG, H REN G. Research progress of garnet series scintillation crystals. Journal of the Chinese Ceramic Society, 43, 882-891(2015).

    [36] M MOSZYNSKI, T LUDZIEJEWSKI, D WOLSKI et al. Properties of the YAG:Ce scintillator. Nuclear Instruments and Methods Physical Research Section A, 345, 461-467(1994).

    [37] J LI, P CHEN X, M KOU H et al. Recent development on garnet single crystal and ceramic scintillators. Journal of the Chinese Ceramic Society, 46, 116-127(2018).

    [40] K KAMADA, S KUROSAWA, P PRUSA et al. Cz grown 2-in. size Ce:Gd3(Al,Ga)5O12 single crystal; relationship between Al, Ga site occupancy and scintillation properties. Optical Materials, 36, 1942-1945(2014).

    [42] H DANIEL J, A SAWANT, M TEEPE et al. Fabrication of high aspect-ratio polymer microstructures for large-area electronic portal X-ray images. Sensors and Actuators A: Physical, 140, 185-193(2007).

    [43] B LIAN J. First-principles study on the electronic structure and optical properties of Gd2O2S. Bulletin of the Chinese Ceramic Society, 30, 1029-1033(2011).

    [44] Q WU G, M QIN H, W FENG S et al. Ultrafine Gd2O2S:Pr powders preparedvia urea precipitation method using SO2/SO42- as sulfuration agent-a comparative study. Powder Technology, 305, 382-388(2017).

    [45] C HE, G XIA Z, L LIU Q. Microwave solid state synthesis and luminescence properties of green-emitting Gd2O2S:Tb3+ phosphor. Optical Materials, 42, 11-16(2015).

    [46] H ZHAN Y, R AI F, F CHEN et al. Intrinsically zirconium-89 labeled Gd2O2S:Eu nanoprobes for in vivo positron emission tomography and gamma-ray-induced radioluminescence imaging. Small, 12, 2872-2876(2016).

    [47] J POPOVICI E, L MURESAN, A HRISTEA-SIMOC et al. Synthesis and characterisation of rare earth oxysulphide phosphors. I. Studies on the preparation of Gd2O2S:Tb phosphor by the flux method. Optical Materials, 27, 559-565(2004).

    [48] C GRESKOVICH, S DUCLOS. Ceramic scintillator. Annual Review of Materials Science, 27, 69-88(1997).

    [49] PEARSON, G RALPH. Hard and soft acids and bases. Journal of the American Chemical society, 3533-3539(1963).

    [50] D HAN P, L ZHANG, X WANG L et al. Investigation on the amounts of Na2CO3 and sulphur to obtain pure Y2O2S and up-conversion luminescence of Y2O2S:Er. Journal of Rare Earths, 29, 849-854(2011).

    [51] J DING Y, M YANG W, T ZHANG Q et al. Influence of alkali metal compound fluxes on Gd2O2S:Tb particle and luminescence. Journal of Materials Science: Materials in Electronics, 26, 1982-1986(2015).

    [52] J DING Y, D HAN P, X WANG L et al. Preparation, morphology and luminescence properties of Gd2O2S:Tb with different Gd2O3 raw materials. Rare Metals, 38, 221-226(2019).

    [53] S USTABAEV P, V BAKHMETYEV V. Synthesis and properties study of the X-ray phosphors Gd2O2S:Tb. Journal of Physics: Conference Series. IOP Publishing, 1560, 012022(2020).

    [54] Y TIAN, H CAO W, X LUO X et al. Preparation and luminescence property of Gd2O2S:Tb X-ray nano-phosphors using the complex precipitation method. Journal of Alloys and Compounds, 433, 313-317(2007).

    [55] J THIRUMALAI, R CHANDRAMOHAN, R DIVAKAR et al. Eu3+ doped gadolinium oxysulfide (Gd2O2S) nanostructures- synthesis and optical and electronic properties. Nanotechnology, 19, 395703(2008).

    [56] H SONG Y, P YOU H, J HUANG Y et al. Highly uniform and monodisperse Gd2O2S:Ln3+ (Ln=Eu,Tb) submicrospheres: solvothermal synthesis and luminescence properties. Inorganic Chemistry, 49, 11499-11504(2010).

    [57] J LEPPERT. Method for Producing Rare Earth Oxysulfide Powder. United States, C01F17/00, US6296824(2001).

    [58] Q LIU, M PAN H, P CHEN X et al. Gd2O2S:Tb scintillation ceramics fabricated from high sinterability nanopowders via hydrogen reduction. Optical Materials, 94, 299-304(2019).

    [59] Q LIU, F WU, P CHEN X et al. Fabrication of Gd2O2S:Pr scintillation ceramics from water-bath synthesized nanopowders. Optical Materials, 104, 109946(2020).

    [60] S TERAZAWA, H NITTA. Production Method of Rare Earth Oxysulfide, Ceramic Scintillator and Its Production Method, Scintillator Array, and Radiation Detector. United States, CO1F17/0093, US9896623(2018).

    [61] B LIANG J, Z MA R, X GENG F et al. OLn2(H)4SO4·nH2O (Ln=Pr to Tb; n~2): a new family of layered rare-earth hydroxides rigidly pillared by sulfate ions. Chemistry of Materials, 22, 6001-6007(2010).

    [62] J WANG X, S MOLOKEEV M, Q ZHU et al. Controlled hydrothermal crystallization of anhydrous Ln2(OH)4SO4 (Ln= Eu-Lu,Y) as a new family of layered rare earth metal hydroxides. Chemistry-A European Journal, 23, 16034-16043(2017).

    [63] J WANG X, G LI J, S MOLOKEEV M et al. Layered hydroxyl sulfate: controlled crystallization, structure analysis, and green derivation of multi-color luminescent (La,RE)2O2SO4 and (La,RE)2O2S phosphors (RE=Pr,Sm,Eu,Tb and Dy). Chemical Engineering Journal, 302, 577-586(2016).

    [64] J WANG X, G LI J, Q ZHU et al. Facile and green synthesis of (La0.95Eu0.05) 2O2S red phosphors with sulfate-ion pillared layered hydroxides as a new type of precursor: controlled hydrothermal processing, phase evolution and photoluminescence. Science and Technology of Advanced Materials, 15, 014204(2013).

    [65] J WANG X, J WANG X, H WANG Z et al. Photo/cathodoluminescence and stability of Gd2O2S:Tb,Pr green phosphor hexagons calcined from layered hydroxide sulfate. Journal of the American Ceramic Society, 101, 5477-5486(2018).

    [66] N RIZKALLA E, R CHOPPIN G. Hydration of lanthanides and actinides in solution. Journal of Alloys and Compounds, 180, 325-336(1992).

    [67] B LIAN J, F LIU, J WANG X et al. Hydrothermal synthesis and photoluminescence properties of Gd2O2SO4:Eu3+ spherical phosphor. Powder Technology, 253, 187-192(2014).

    [68] B LIAN J, H QIN, P LIANG et al. Controllable synthesis and photoluminescence properties of Gd2O2S:x%Pr3+ microspheres using an urea-ammonium sulfate (UAS) system. Ceramics International, 41, 2990-2998(2015).

    [69] T SANG X, B LIAN J, C WU N et al. Synthesis, characterization and formation mechanism of Gd2O2S:Pr3+,Ce3+ phosphors by sealed triple-crucible method. Journal of Asian Ceramic Societies, 8, 733-744(2020).

    [70] J WANG X, H MENG Q, T LI M et al. A low temperature approach for photo/cathodoluminescent Gd2O2S:Tb (GOS:Tb) nanophosphors. Journal of the American Ceramic Society, 102, 3296-3306(2019).

    [71] L BOLYASNIKOVA, V DEMIDENKO, E GOROKHOVA et al. Fluorescent Ceramic and Fabrication Method Thereof. United States, C09K11/17, US8025817(2011).

    [72] I GOROKHOVA E, A DEMIDENKO V, B MIKHRIN S et al. Luminescence and scintillation properties of Gd2O2S:Tb,Ce ceramics. IEEE Transactions on Nuclear Science, 52, 3129-3132(2005).

    [73] I GOROKHOVA E, A DEMIDENKO V, B ERONKO S et al. Luminescence and scintillation properties of Gd2O2S:Eu optical ceramic. Journal of Optical Technology, 77, 50-58(2010).

    [74] G ZEITLER, H SCHREINEMACHER, C RONDA. Hot Axial Pressing Method. United States, B29C47/76, US8221664(2012).

    [75] Y ITO, H YAMADA, M YOSHIDA et al. Hot isostatic pressed Gd2O2S:Pr,Ce,F translucent scintillator ceramics for X-ray computed tomography detectors. Japanese Journal of Applied Physics, 27, L1371(1988).

    [76] C LACOURSE B, M ZANDI. Rare Earth Oxysulfide Scintillator and Methods for Producing Same. United states, C09K II/84. US8460578(2013).

    [77] C WANG Y, J ZHANG Q, J LI Y et al. Process for the Preparation of Gadolinium Oxysulfide Scintillation Ceramics. United States, C09K11/77, US9771515(2017).

    [78] M KOBUSCH, W ROSSNER. Method for Producing a Scintillator Ceramic. United States, C04B33/32, US7303699(2007).

    [79] W WANG, S LI Y, M KOU H et al. Fabrication of Gd2O2S:Pr,Ce,F scintillation ceramics by pressureless sintering in nitrogen atmosphere. International Journal of Applied Ceramic Technology, 12, E249-E255(2015).

    [80] G BLASSE. Scintillator materials. Chemistry of Materials, 6, 1465-1475(1994).

    [82] W WANG, M KOU H, P LIU S et al. Optical and scintillation properties of Gd2O2S:Pr,Ce,F ceramics fabricated by spark plasma sintering. Ceramics International, 41, 2576-2581(2015).

    [83] M PAN H, Q LIU, P CHEN X et al. Fabrication and properties of Gd2O2S:Tb scintillation ceramics for the high-resolution neutron imaging. Optical Materials, 105, 109909(2020).

    [84] I KANDARAKIS, D CAVOURAS. Role of the activator in the performance of scintillators used in X-ray imaging. Applied Radiation and Isotopes, 54, 821-831(2001).

    [85] C MICHAIL, I VALAIS, I SEFERIS et al. Measurement of the luminescence properties of Gd2O2S:Pr,Ce,F powder scintillators under X-ray radiation. Radiation measurements, 70, 59-64(2014).

    [86] M TAKAHASHI, T YUMURA, I YODA et al. Visualization of bubbles behavior in lead-bismuth eutectic by gamma-ray. International Conference on Nuclear Engineering, 49323, 533-539(2010).

    [87] H YAMADA, I MIURA, M DOI et al. Phosphor, and Radiation Detector and X-ray CT Unit Each Equipped Therewith. United States, C09K11/86, US6340436. 2002.01.22.

    [88] A DA SILVA A, A CEBIM M, R DAVOLOS M. Excitation mechanisms and effects of dopant concentration in Gd 2O2S:Tb3+ phosphor. Journal of Luminescence, 128, 1165-1168(2008).

    [89] C GRABMAIER, H BOEDINGER, J LEPPERT. Phosphor with an Additive for Reducing Afterglow: United States, C09K11/08, US5560867(1996).

    [90] R NAKAMURA, N YAMADA, M ISHII. Effects of halogen ions on the X-ray characteristics of Gd2O2S:Pr ceramic scintillator. Japanese Journal of Applied Physics, 38, 6923(1999).

    [91] W ROSSNER, M OSTERTAG, F JERMANN. Properties and applications of gadolinium oxysulfide based ceramic scintillators. Electrochemical Society Proceedings, 98, 187-194(1999).

    [92] W ZHANG J, L LIU Y, Q MAN S. Afterglow phenomenon in erbium and titanium codoped Gd2O2S phosphors. Journal of Luminescence, 117, 141-146(2006).

    [93] A KHARIEKY A, R E SARAEE K. Synthesis and characterization of radio and thermoluminescence properties of Sm doped Gd2O3, Gd2O2S and Gd2O2SO4 nanocrystalline phosphors. Journal of Luminescence, 220, 116979(2020).

    [94] N KARDJILOV, I MANKE, R WORACEK et al. Advances in neutron imaging. Materials Today, 21, 652-672(2018).

    [95] N KARDJILOV, M DAWSON, A HILGER et al. A highly adaptive detector system for high resolution neutron imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment, 651, 95-99(2011).

    [96] S ANDERSON I, L MCGREEVY R, Z BILHRUX H. Neutron imaging and applications. Springer Science Business Media, 200, 47-63(2009).

    [97] Z GALUNOV N, V GRINYOV B, L KARAVAEVA N et al. Gd-bearing composite scintillators as the new thermal neutron detectors. IEEE Transactions on Nuclear Science, 58, 339-346(2011).

    [98] A BACKLIN, E HOLMBERG N, G BACKSTROM. Internal conversion study of 113Cd (n, γ)114Cd. Nuclear Physics, 80, 154-176(1966).

    [99] W E VAN EIJK C. Inorganic scintillators for thermal neutron detection. IEEE Transactions on Nuclear Science, 59, 2242-2247(2012).

    [100] S SUN R K. Photo-energy calibration of 6LiI (Eu) crystals in mixed radiation fields using 24Na. Health Physics, 53, 191-196(1987).

    [101] P DORENBOS, J T M DE HAAS, C VAN EIJK. Non-proportionality in the scintillation response and the energy resolution obtainable with scintillation crystals. IEEE Transactions on Nuclear Science, 42, 2190-2202(1995).

    [102] J KNITEL M, P DORENBOS, M COMBES C et al. Luminescence and storage properties of LiYSiO4: Ce. Journal of Luminescence, 69, 325-334(1996).

    [103] W E VAN EIJK C, A BESSIER, P DORENBOS. Inorganic thermal-neutron scintillators. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers, Detectors and Associated Equipment, 529, 260-267(2004).

    [104] W E VAN EIJK C. Inorganic scintillators for thermal neutron detection. Radiation Measurements, 38, 337-342(2004).

    [105] R YASUDA, M KATAGIRI, M MATSUBAYASHI. Influence of powder particle size and scintillator layer thickness on the performance of Gd2O2S:Tb scintillators for neutron imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment, 680, 139-144(2012).

    [106] P TRTIK, J HOVIND, C GRUNZWEIG et al. Improving the spatial resolution of neutron imaging at Paul Scherrer Institute- the neutron microscope project. Physics Procedia, 69, 169-176(2015).

    [107] P TRTIK, H LEHMANN E. Isotopically-enriched gadolinium-157 oxysulfide scintillator screens for the high-resolution neutron imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment, 788, 67-70(2015).

    [108] W ROSSNER, C GRABMAIER B. Phosphors for X-ray detectors in computed tomography. Journal of Luminescence, 48, 29-36(1991).

    [109] M ISHII, M KOBAYASHI. Single crystals for radiation detectors. Progress in Crystal Growth and Characterization of Materials, 23, 245-311(1992).

    [110] P LECOQ. Development of new scintillators for medical applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment, 809, 130-139(2016).

    [111] M BUZUG T. Computed tomography: from photon statistics to modern cone-beam CT. Springer Science & Business Media, 36, 3858(2009).

    [112] Y CHEN J, Y SHI, T FENG et al. Scintillation ceramics and their application on medical X-CT. Journal of the Chinese Ceramic Society, 32, 868-872(2004).

    [113] T WU Y, H REN G, M NIKL et al. CsI: Ti+, Yb2+: ultra-high light yield scintillator with reduced afterglow. CrystEngComm, 16, 3312-3317(2014).

    [114] C JIANG H, J VARTULI, C VESS. Gemstone-the Ultimate Scintillator for Computed Tomography. GE White Paper CT-0376-1108-EN-US, 1-8(2008).

    [115] R NAKAMURA. Improvements in the X-ray characteristics of Gd2O2S:Pr ceramic scintillators. Journal of the American Ceramic Society, 82, 2407-2410(1999).

    [116] https://www.toshiba-tmat.co.jp/en/product/sc_cera.htm

    [117] https://www.siemens-healthineers.com/computed-tomography/technologies-innovations/ufc-ultra-fast-ceramic

    [118] http://www.umich.edu/~ners580/ners-bioe_481/lectures/pdfs/2013-AAPM_Altman-CTdetectors.pdf

    [119] http://www.hitachi-metals.co.jp/e/products/elec/md/p05_14.html

    [120] http://www.irayam.com/pdf/4200007A0_Datasheet%20GOS%20Ceramic-CN.pdf

    Jiang LI, Jiyang DING, Xinyou HUANG. Rare Earth Doped Gd2O2S Scintillation Ceramics [J]. Journal of Inorganic Materials, 2021, 36(8): 789
    Download Citation