• Journal of Inorganic Materials
  • Vol. 36, Issue 8, 789 (2021)
Jiang LI1, Jiyang DING1、2, and Xinyou HUANG2
Author Affiliations
  • 11. Key Laboratory of Transparent Opto-Functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
  • 22. School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
  • show less
    DOI: 10.15541/jim20200544 Cite this Article
    Jiang LI, Jiyang DING, Xinyou HUANG. Rare Earth Doped Gd2O2S Scintillation Ceramics [J]. Journal of Inorganic Materials, 2021, 36(8): 789 Copy Citation Text show less
    Scintillation mechanism of activator doped inorganic scintillators in terms of energy band structure[14]
    1. Scintillation mechanism of activator doped inorganic scintillators in terms of energy band structure[14]
    History (1940-2017) of first publication of scintillators with light output of >20000 ph/MeV, representing scintillators published in peer-reviewed articles [18]
    2. History (1940-2017) of first publication of scintillators with light output of >20000 ph/MeV, representing scintillators published in peer-reviewed articles [18]
    Schematic of Gd2O2S structure[41]
    3. Schematic of Gd2O2S structure[41]
    FE-SEM images of different powder[52]
    4. FE-SEM images of different powder[52]
    SEM images of GOS:Tb phosphors synthesized by the flux method[53]
    5. SEM images of GOS:Tb phosphors synthesized by the flux method[53]
    Structure diagrams of precursor La2(OH) 4SO4·nH2O and calcined products in different atmospheres[63]
    6. Structure diagrams of precursor La2(OH) 4SO4·nH2O and calcined products in different atmospheres[63]
    Fluorescence spectra of GOS:Tb powders under different accelerating voltages and electron beam currents[70]
    7. Fluorescence spectra of GOS:Tb powders under different accelerating voltages and electron beam currents[70]
    Total transmittance curves of GOS ceramics (thickness 1.6 mm) prepared by hot pressing[72]
    8. Total transmittance curves of GOS ceramics (thickness 1.6 mm) prepared by hot pressing[72]
    FESEM images of the fracture surfaces and EDS analysis[58]
    9. FESEM images of the fracture surfaces and EDS analysis[58]
    Microstructures of GOS ceramics prepared by pressureless sintering under different conditions[78]
    10. Microstructures of GOS ceramics prepared by pressureless sintering under different conditions[78]
    Pulse height spectra (a) of GOS:Pr, Ce, F ceramics with different thicknesses prepared by pressureless sintering and commercial GOS ceramics, and afterglow curve (b) of GOS:Pr,Ce,F ceramics by pressureless sintering and commercial ceramics[79]
    11. Pulse height spectra (a) of GOS:Pr, Ce, F ceramics with different thicknesses prepared by pressureless sintering and commercial GOS ceramics, and afterglow curve (b) of GOS:Pr,Ce,F ceramics by pressureless sintering and commercial ceramics[79]
    Influence of annealing temperature on the afterglow performance of GOS: Pr ceramics[75]
    12. Influence of annealing temperature on the afterglow performance of GOS: Pr ceramics[75]
    Schematic diagram of neutron imaging[95]
    13. Schematic diagram of neutron imaging[95]
    Principle diagram of X-CT imaging system[29]
    14. Principle diagram of X-CT imaging system[29]
    Gemstone scintillator material and detector module for Discovery CT750 HD[114]
    15. Gemstone scintillator material and detector module for Discovery CT750 HD[114]
    Photo of GOS:Pr,Ce,F scintillation ceramics prepared in Toshiba[116]
    16. Photo of GOS:Pr,Ce,F scintillation ceramics prepared in Toshiba[116]
    Afterglow (a) and X-ray absorption efficiency (b) curves of German Siemens GOS (UFC ) scintillation ceramics[117]
    17. Afterglow (a) and X-ray absorption efficiency (b) curves of German Siemens GOS (UFC ) scintillation ceramics[117]
    ScintillatorDensity/(g·cm-3) Zeff/cm Decay time/nsλem/nm Light yield/(×103, ph/MeV) Ref.
    NaI:Tl3.6750.823041543[23]
    LaI:Ce5.654.21-2452, 5020.2-0.3[24]
    SrI2:Eu 4.5549.851200435115[25]
    BaBrI:Eu5.2151.1331-71441389[26]
    Bi4Ge3O127.1375.23005058.2[27]
    PbWO48.2875.664200.1[28]
    CaWO46.163.860043020[22]
    Gd2O2S:Pr,Ce,F 7.3461.1400051035[16]
    YAlO3:Ce 5.533.63035021[29]
    Y3Al5O12:Pr 4.5632.623.4310, 3809.25[16]
    Gd2SiO5:Ce 6.7159.460-60043012.5[16]
    Y2SiO5:Pr 4.45356.5-33270, 354.58[30]
    Gd3Al2Ga3O12:Ce 6.6750.680-80052046[31]
    (Gd,Y)3(Al,Ga)5O12:Ce 5.845100-60056060[32]
    Table 1. Optical and scintillation properties of selected scintillators
    PropertyFeature
    Molecular formulaGd2O2S
    Relative molecular mass378
    Crystal structureHexagonal crystal system
    Cell parametersa=0.38514 nm, c/a=1.73
    Melting point2070 ℃
    Density7.34 g/cm3
    Zeff61.1
    Index of refraction2.2
    Band gap4.6-4.8 eV
    Phonon energy520 cm-1
    ColorColorless
    Technical aspectsChemical stability
    Table 2. Basic physical and chemical property of Gd2O2S[41,42]
    Scintillatorsλem/nm Decay time/μsAfterglow/(%, after 3 ms/100 ms)Light yield/(ph·MeV-1) Ref.
    Gd2O2S:Pr,Ce,F 5104<0.1/<0.0135000[29,85]
    Gd2O2S:Tb 5451×103-60000[29]
    Gd2O2S:Eu 6251×1030.14%@3 ms60000[73,85-86]
    Gd2O2S:Eu,Tb,Ce,Ca 600-0.18%@30 ms62000[87]
    Table 3. Scintillation property of GOS ceramics doped with different rare earth ions
    IsotopeReactionCross-section of thermal neutron adsorption/m2Natural abundance/%Ref.
    6Li 3H, 4He 9.1×10-267.5[96-97]
    10B α, γ, 7Li 3.83×10-2519.9[97]
    113Cd γ, e-2.1×10-2412.2[98]
    155Gd γ, e-6.09×10-2414.7[96-97]
    157Gd γ, e-2.55×10-2315.7[96-97]
    Table 4. Property of commonly used neutron imaging scintillation screen nuclides
    ScintillatorDensity/ (g·cm-3) λem/nm Light yieldα/βratio τ/ns Ref.
    Neutron/(×103, ph·neu.-1) γ/(×103, ph·MeV-1) Neutronγ
    6Li-glass:Ce 2.5395640.37070[99]
    6LiI:Eu 4.147050120.871.4×1031.4×103[6,100]
    6LiF/ZnS:Ag 2.6450160750.448×104100[99,101]
    LiYSiO4:Ce 3.84101010--3.8×104[102]
    6Li6Gd(11BO3)3:Ce 3.5385, 41540250.32-200,800[103]
    Cs26LiYCl6:Ce 3.338070220.66100,103100,103[6,99]
    Table 5. Inorganic scintillators used in neutron imaging and their properties
    ScintillatorDensity/(g·cm-3) Thickness to stop 99%*/mm λem/nm Light yield/ (ph·MeV-1) Decay time/μsAfterglow/(% after 3 ms/100 ms) Ref.
    CsI:Tl4.516.8550660001.22>2/0.3[16]
    Bi4Ge3O127.13-48090000.300.005%@3 ms[29]
    CdWO47.92.4495200005.00<0.1/0.02[16,29]
    (Y,Gd)2O3:Eu,Pr 5.96.16104200010004.9/<0.01[114]
    Gd2O2S:Pr,Ce,F 7.32.9510350004<0.1/<0.01[29,85,115]
    Gd3(Ga,Al)2O12:Ce 6.2-540580000.09-0.17<0.01%@20 ms[40]
    Table 6. Inorganic scintillators for medical imaging and their properties
    Manufacturerλem/nm Light yield/(ph·MeV-1) Decay time/μsAfterglowRef.
    Siemens (Germany)5125000030.01%@2.5-4 ms[29,117]
    Philips (Netherlands)5144000030.02%@3 ms[118]
    Toshiba (Japan)5123600030.08%@10 ms[116]
    Hitachi (Japan)5124200030.001%@300 ms[119]
    Iray (China)5102700030.1%@3 ms[120]
    Table 7. Performance of GOS:Pr,Ce(F) scintillation ceramics prepared in the major companies abroad and at home
    Jiang LI, Jiyang DING, Xinyou HUANG. Rare Earth Doped Gd2O2S Scintillation Ceramics [J]. Journal of Inorganic Materials, 2021, 36(8): 789
    Download Citation