• Journal of Inorganic Materials
  • Vol. 36, Issue 7, 773 (2021)
Youbing LI1、2, Yanqing QIN1、2, Ke CHEN1、2, Lu CHEN1、2, Xiao ZHANG1、2, Haoming DING1、2, Mian LI1、2, Yiming ZHANG1、2, Shiyu DU1、2, Zhifang CHAI1、2, and Qing HUANG1、2、*
Author Affiliations
  • 11. Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • 22. Qianwan Institute of CNiTECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • show less
    DOI: 10.15541/jim20200529 Cite this Article
    Youbing LI, Yanqing QIN, Ke CHEN, Lu CHEN, Xiao ZHANG, Haoming DING, Mian LI, Yiming ZHANG, Shiyu DU, Zhifang CHAI, Qing HUANG. Molten Salt Synthesis of Nanolaminated Sc2SnC MAX Phase[J]. Journal of Inorganic Materials, 2021, 36(7): 773 Copy Citation Text show less
    References

    [1] W BARSOUM M. The MN+1AXN phases: a new class of solids; thermodynamically stable nanolaminates. Progress in Solid State Chemistry, 28, 201-281(2000).

    [2] M SOKOL, V NATU, S KOTA et al. On the chemical diversity of the MAX phases. Trends in Chemistry, 1, 210-223(2009).

    [3] P EKLUND, M BECKERS, U JANSSON et al. The Mn+1AXn phases: materials science and thin-film processing. Thin Solid Films, 518, 1851-1878(2010).

    [4] R WHITTLE K, M BLACKFORD, R AUGHTERSON M et al. Radiation tolerance of Mn+1AXn phases, Ti3AlC2 and Ti3SiC2. Acta Materialia, 58, 4362-4368(2010).

    [5] H FASHANDI, M DAHLQVIST, J LU et al. Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC. Nature Materials, 16, 814-818(2017).

    [6] J WARD, D BOWDEN, E PRESTAT et al. Corrosion performance of Ti3SiC2, Ti3AlC2, Ti2AlC and Cr2AlC MAX phases in simulated primary water conditions. Corrosion Science, 39, 444-453(2018).

    [7] Y ZHU, A ZHOU, Y JI et al. Tribological properties of Ti3SiC2 coupled with different counterfaces. Ceramics International, 41, 6950-6955(2012).

    [8] M NAGUIB, M KURTOGLU, V PRESSER et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23, 4248-4253(2011).

    [9] R LUKATSKAYA M, O MASHTALIR, E REN C et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 341, 1502-1505(2013).

    [10] B ANASORI, R LUKATSKAYA M, Y GOGOTSI. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2, 16098(2017).

    [11] B LI Y, H SHAO, F LIN Z et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nature Materials, 19, 894-899(2020).

    [12] M NECHICHE, V GAUTHIER-BRUNET, V MAUCHAMP et al. Synthesis and characterization of a new (Ti1-ε,Cuε)3(Al,Cu)C2 MAX phase solid solution. Journal of the European Ceramic Society, 37, 459-466(2019).

    [13] M LI, J LU, K LUO et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. Journal of the American Chemical Society, 141, 4730-4737(2019).

    [14] Y LI, M LI, J LU et al. Single-atom-thick active layers realized in nanolaminated Ti3(AlxCu1-x)C2 and its artificial enzyme behavior. ACS Nano, 13, 9198-9205(2019).

    [15] H DING, B LI Y, J LU et al. Synthesis of MAX phases Nb2CuC and Ti2(Al0.1Cu0.9)N by A-site replacement reaction in molten salts. Materials Research Letters, 7, 510-516(2019).

    [16] B LI Y, J LU, M LI et al. Multielemental single-atom-thick A layers in nanolaminated V2(Sn,A)C (A=Fe, Co, Ni, Mn) for tailoring magnetic properties. Proceedings of the National Academy of Sciences of the United States of America, 117, 820-825(2020).

    [17] S ARYAL, R SAKIDJA, W BARSOUM M et al. A genomic approach to the stability, elastic, and electronic properties of the MAX phases. Physical Status Solidi, 251, 1480-1497(2014).

    [18] A BOUHEMADOU, R KHENATA, M KHAROUBI et al. First-principles study of structural and elastic properties of Sc2AC (A=Al, Ga, In, Tl). Solid State Communications, 146, 175-180(2008).

    [19] F COVER M, O WARSCHKOW, M BILEK M et al. A comprehensive survey of MAX phase elastic properties. Journal of Physics: Condensed Matter, 21, 305403(2009).

    [20] A CHOWDHURY, A ALI M, M M HOSSAIN et al. Predicted MAX phase Sc2InC: dynamical stability, vibrational and optical properties. Physical Status Solidi, 255, 1700235(2018).

    [21] H ZHA X, C REN J, L FENG et al. Bipolar magnetic semiconductors among intermediate states during the conversion from Sc2C(OH)2 to Sc2CO2 MXene. Nanoscale, 10, 8763-8771(2018).

    [22] S KUCHIDA, T MURANAKA, K KAWASHIMA et al. Superconductivity in Lu2SnC. Physica C: Superconductivity, 494, 77-79(2013).

    [23] X LIU, N FECHLER, M ANTONIETTI. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chemical Society Reviews, 42, 8237-8265(2013).

    [24] B WANG, A ZHOU, Q HU et al. Synthesis and oxidation resistance of V2AlC powders by molten salt method. International Journal of Applied Ceramic Technology, 14, 873-879(2017).

    [25] B TIAN W, L WANG P, M KAN Y et al. Cr2AlC powders prepared by molten salt method. Journal of Alloys and Compounds, 461, L5-L10(2008).

    [26] T GALVIN, C HYATT N, M RAINFORTH W et al. Molten salt synthesis of MAX phases in the Ti-Al-C system. Journal of the European Ceramic Society, 38, 4585-4589(2018).

    [27] X GUO, J WANG, S YANG et al. Preparation of Ti3SiC2 powders by the molten salt method. Materials Letters, 111, 211-213(2013).

    [28] C ROY, P BANERJEE, S BHATTACHARYYAh. Molten salt shielded synthesis (MS3) of Ti2AlN and V2AlC MAX phase powders in open air. Journal of the European Ceramic Society, 40, 923-929(2020).

    [29] J CLARK S, D SEGALL M, J PICKARD C et al. First principles methods using CASTEP. Zeitschrift für Kristallographie-Crystalline Materials, 220, 567-570(2005).

    [30] M SEGALL, J LINDAN P, J PROBERT M et al. First-principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter, 14, 2717-2744(2002).

    [31] P PERDEW J, K BURKE, M ERMZERHOF. Generalized gradient approximation made simple. Physical Review Letters, 77, 3865-3868(1996).

    [32] D VANDERBILT. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41, 7892-7895(1990).

    [33] W FRANK, C ELSASSER, M FAHNLE. Ab initio force-constant method for phonon dispersions in alkali metals. Physical Review Letters, 74, 1791-1794(1995).

    [34] K PARLINSKI, Q LI Z, Y KAWAZOE. First-principles determination of the soft mode in cubic ZrO2. Physical Review Letters, 78, 4063-4066(1997).

    [35] Q XU, Y ZHOU, H ZHANG et al. Theoretical prediction, synthesis, and crystal structure determination of new MAX phase compound V2SnC. Journal of Advanced Ceramics, 29, 481-492(2020).

    [36] M BORN, D MISRA R. On the stability of crystal lattices. Mathematical Proceedings of the Cambridge Philosophical Society, 36, 466-478(1940).

    [37] H KOC, H OZISIK, E DELIGOZ et al. Mechanical, electronic, and optical properties of Bi2S3 and Bi2Se3 compounds: first principle investigations. Journal of Molecular Modeling, 20, 2180(2014).

    [38] F PUGH S. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science., 45, 823-843(1954).

    [39] B KANOUN M, S GOUMRI-SAID, H RESHAK A. Theoretical study of mechanical, electronic, chemical bonding and optical properties of Ti2SnC, Zr2SnC, Hf2SnC and Nb2SnC. Computational Materials Science, 47, 491-500(2009).

    Youbing LI, Yanqing QIN, Ke CHEN, Lu CHEN, Xiao ZHANG, Haoming DING, Mian LI, Yiming ZHANG, Shiyu DU, Zhifang CHAI, Qing HUANG. Molten Salt Synthesis of Nanolaminated Sc2SnC MAX Phase[J]. Journal of Inorganic Materials, 2021, 36(7): 773
    Download Citation