• Infrared and Laser Engineering
  • Vol. 47, Issue 12, 1206002 (2018)
Xu Yangyang1、*, Zhou Jianzhong1, Tan Wensheng2, Meng Xiankai1, Sheng Jie1, Huang Shu1, and Sun Yunjie1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201847.1206002 Cite this Article
    Xu Yangyang, Zhou Jianzhong, Tan Wensheng, Meng Xiankai, Sheng Jie, Huang Shu, Sun Yunjie. Surface mechanical properties of 2024-T351 aluminum alloy strengthened by cryogenic laser peening[J]. Infrared and Laser Engineering, 2018, 47(12): 1206002 Copy Citation Text show less
    References

    [1] Li Qihan, Wang Yanrong. The Problem of Aero-engine Structural Strength Design [M]. Shanghai: Press of Shanghai Jiaotong University, 2014. (in Chinese)

    [2] Wagner L, Wollmann M, Mhaede M, et al. Surface layer properties and fatigue behavior in Al 7075-T73 and Ti-6Al-4V: Comparing results after laser peening; shot peening and ball-burnishing[J]. International Journal of Structural Integrity, 2011, 2(2): 185-199.

    [3] Huang S, Zhou J Z, Sheng J, et al. Effects of laser peening with different coverage areas on fatigue crack growth properties of 6061-T6 aluminum alloy[J]. International Journal of Fatigue, 2013, 47(2): 292-299.

    [4] Shen Xiaojun, Wang Cheng, An Zhibin, et al. Effects of oblique laser shock processing on rotary bending fatigue of aero-engine fan shaft[J]. Infrared and Laser Engineering, 2015, 44(12): 3548-3553. (in Chinese)

    [5] Kong Dejun, Zhou Chaozheng, Wu Yongzhong. Mechanism on residual stress of 304 stainless steel by laser shock processing[J]. Infrared and Laser Engineering, 2010, 39(4): 736-740. (in Chinese)

    [6] Cao Yupeng, Feng Aixin, Xue Wei, et al. Experimental research and theoretical study of laser shock wave induced dynamic strain on 2024 aluminum alloy sufface [J]. Chinese J Laser, 2014, 41(9): 0903004. (in Chinese)

    [7] Chen Ding, Li Wenxian. Cryogenic treatment of aluminum and aluminum alloys [J]. Chinese Journal of Nonferrous Metals, 2000, 10(6): 891-895. (in Chinese)

    [8] Wang J, Fu R, Li Y, et al. Effects of deep cryogenic treatment and low-temperature aging on the mechanical properties of friction-stir-welded joints of 2024-T351 aluminum alloy[J]. Materials Science & Engineering A, 2014, 609(27): 147-153.

    [9] Konkova T, Mironov S, Korznikov A, et al. Microstructural response of pure copper to cryogenic rolling[J]. Acta Materialia, 2010, 58(16): 5262-5273.

    [10] Rangaraju N, Raghuram T, Krishna B V, et al. Effect of cryo-rolling and annealing on microstructure and properties of commercially pure aluminum[J]. Materials Science and Engineering A, 2005, 398(1): 246-251.

    [11] Novelli M, Fundenberger J J, Bocher P, et al. On the effectiveness of surface severe plastic deformation by shot peening at cryogenic temperature[J]. Applied Surface Science, 2016, 389: 1169-1174.

    [12] Ye C, Suslov S, Lin D, et al. Cryogenic ultrahigh strain rate deformation induced hybrid nanotwinned microstructure for high strength and high ductility[J]. Journal of Applied Physics, 2014, 115(21): 213519.

    [13] Ye C, Suslov S, Lin D, et al. Microstructure and mechanical properties of copper subjected to cryogenic laser shock peening[J]. Journal of Applied Physics, 2011, 110: 083504.

    [14] Xu Gaofeng, Zhou Jianzhong, Meng Xiankai, et al. Propagation and dislocation development properties of laser shock waves in monocrystalline titanium under cryogenic environment[J]. Chinese J Laser, 2017, 44(6): 0602005. (in Chinese)

    [15] Meng Xiankai, Zhou Jianzhong, Su Chun, et al. Effects of temperature on surface mechanical properties of 2024 aluminum alloy treated by laser peening [J]. Chinese J Laser, 2016, 43(10): 1002003. (in Chinese)

    [16] Huang Yuqi. Impact response and microstructure characteristic of 6061-T6 aluminum alloy at cryogenic temperature [D]. Taiwan: Chenggong University, 2013.(in Chinese)

    [17] Liao Y, Cheng G J. Controlled precipitation by thermal engineered laser shock peening and its effect on dislocation pinning: Multiscale dislocation dynamics simulation and experiments[J]. Acta Materialia, 2013, 61(6): 1957-1967.

    [18] Lu Jinzhong, Luo Kaiyu, Feng Aixin, et al. Microstructure enhancement mechanism of LY2 aluminum alloy means of a single laser shock processing[J]. Chinese J Laser, 2010, 37(10): 2662-2666.(in Chinese)

    [19] (in Chinese)

         Ren Xudong, Zhang Tian, Jiang Dawei, et al. Effects of laser shock processing and aluminizing on microstructure and properties of 12 CrMoV alloy [J]. Infrared and Laser Engineering, 2011, 40(2): 241-244.

    [20] Achintha M, Nowell D. Eigenstrain modellingof residual stresses generated by arraysof LSP shots[J]. Procedia Engineering, 2011, 10(7): 1327-1332.

    Xu Yangyang, Zhou Jianzhong, Tan Wensheng, Meng Xiankai, Sheng Jie, Huang Shu, Sun Yunjie. Surface mechanical properties of 2024-T351 aluminum alloy strengthened by cryogenic laser peening[J]. Infrared and Laser Engineering, 2018, 47(12): 1206002
    Download Citation