• Laser & Optoelectronics Progress
  • Vol. 55, Issue 1, 11406 (2018)
Duan Musen1, Wu Fan2, and Liu Ruixue3、*
Author Affiliations
  • 1College of Physical Science and Technology, Heilongjiang University, Harbin, Heilongjiang 150080, China
  • 2Dermatology, Shandong Provincial Hospital, Jinan, Shandong 250021, China
  • 3Research Department, Retina Health Center, Fort Myers 33907, America
  • show less
    DOI: 10.3788/LOP55.011406 Cite this Article Set citation alerts
    Duan Musen, Wu Fan, Liu Ruixue. Application of Laser Additive Manufacturing Technology in Ophthalmology[J]. Laser & Optoelectronics Progress, 2018, 55(1): 11406 Copy Citation Text show less
    References

    [2] Bartels K A, Bovik A C, Crawford R C et al. Selective laser sintering for the creation of solid models from 3D microscopic images[J]. Biomedical Sciences Instrumentation, 29, 243-50(1993). http://europepmc.org/abstract/MED/8329596

    [3] Navajas E V, ten Hove M. Three-dimensional printing of a transconjunctival vitrectomy trocar-cannula system[J]. Ophthalmologica, 237, 119-122(2017). http://www.karger.com/Article/Abstract/457807

    [4] Fina F, Goyanes A, Gaisford S et al. Selective laser sintering (SLS) 3D printing of medicines[J]. International Journal of Pharmaceutics, 529, 285-293(2017). http://www.ncbi.nlm.nih.gov/pubmed/28668582

    [5] Levy R A, Guduri S, Crawford R H. Preliminary experience with selective laser sintering models of the human temporal bone[J]. American Journal of Neuroradiology, 15, 473-477(1994). http://www.ncbi.nlm.nih.gov/pubmed/8197943

    [6] Berry E, Brown J M, Connell M et al. Preliminary experience with medical applications of rapid prototyping by selective laser sintering[J]. Medical Engineering & Physics, 19, 90-96(1997). http://test.europepmc.org/abstract/MED/9140877

    [7] Aung S C, Tan B K, Foo C L et al. Selective laser sintering: Application of a rapid prototyping method in craniomaxillofacial reconstructive surgery[J]. Annals Academy of Medicine Singapore, 28, 739-743(1999). http://europepmc.org/abstract/MED/10597362

    [8] Sannomiya E K, Silva J V, Brito A A et al. Surgical planning for resection of an ameloblastoma and reconstruction of the mandible using a selective laser sintering 3D biomodel[J]. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 106, e36-e40(2008). http://www.sciencedirect.com/science/article/pii/S1079210408000516

    [9] Kittle D, Holshouser B, Slater J M et al. Technical note: Rapid prototyping of 3D grid arrays for image guided therapy quality assurance[J]. Medical Physics, 35, 5708-5712(2008). http://onlinelibrary.wiley.com/doi/10.1118/1.3006198/pdf

    [10] Duan B, Wang M, Zhou W Y et al. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering[J]. Acta Biomater, 6, 4495-4505(2010). http://www.ncbi.nlm.nih.gov/pubmed/20601244

    [11] Ciocca L. Fantini M , de Crescenzio F, et al. Direct metal laser sintering (DMLS) of a customized titanium mesh for prosthetically guided bone regeneration of atrophic maxillary arches[J]. Medical & Biological Engineering & Computing, 49, 1347-1352(2011). http://europepmc.org/abstract/MED/21779902

    [12] Creylman V, Muraru L, Pallari J et al. Gait assessment during the initial fitting of customized selective laser sintering ankle foot orthoses in subjects with drop foot[J]. Prosthetics and Orthotics International, 37, 132-138(2013).

    [13] Bae E J, Kim J H, Kim W C et al. Bond and fracture strength of metal-ceramic restorations formed by selective laser sintering[J]. The Journal of Advanced Prosthodontics, 6, 266-271(2014). http://europepmc.org/abstract/MED/25177469

    [14] Niittynen J, Sowade E, Kang H et al. Comparison of laser and intense pulsed light sintering (IPL) for inkjet-printed copper nanoparticle layers[J]. Scientific Reports, 5, 8832(2015). http://europepmc.org/articles/PMC4351538

    [15] Mota C, Puppi D, Chiellini F et al. Additive manufacturing techniques for the production of tissue engineering constructs[J]. Journal of Tissue Engineer and Regenerative Medicine, 9, 174-190(2015). http://www.ncbi.nlm.nih.gov/pubmed/23172792

    [16] Chang C H, Lin C Y, Liu F H et al. 3D printing bioceramic porous scaffolds with good mechanical property and cell affinity[J]. Plos One, 10, 0143713(2015). http://europepmc.org/articles/PMC4664392/

    [17] Shou W, Mahajan B K, Ludwig B et al. Low-cost manufacturing of bioresorbable conductors by evaporation-condensation-mediated laser printing and sintering of Zn nanoparticles[J]. Advanced Materials, 29, 1700172(2017). http://onlinelibrary.wiley.com/doi/10.1002/adma.201700172/full

    [18] Benedetti M, Torresani E, Leoni M et al. The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting[J]. Journal of Mechanical Behavior of Biomedical Materials, 71, 295-306(2017). http://www.ncbi.nlm.nih.gov/pubmed/28376363

    [19] Shirazi S F, Gharehkhani S, Mehrali M et al. A review on powder-based additive manufacturing for tissue engineering: Selective laser sintering and inkjet 3D printing[J]. Science and Technology of Advanced Materials, 16, 033502(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC5099820/

    [20] Kyobula M, Adedeji A, Alexander M R et al. 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release[J]. Journal of Controlled Release, 261, 207-215(2017). http://www.ncbi.nlm.nih.gov/pubmed/28668378

    [21] Ebert J, Ozkol E, Zeichner A et al. Direct inkjet printing of dental prostheses made of zirconia[J]. Journal of Dental Research, 88, 673-676(2009). http://www.ncbi.nlm.nih.gov/pubmed/19641157

    [22] Cui X F, Boland T. Human microvasculature fabrication using thermal inkjet printing technology[J]. Biomaterials, 30, 6221-6227(2009).

    [23] de Hazan Y, Heinecke J, Weber A et al. . High solids loading ceramic colloidal dispersions in UV curable media via comb-polyelectrolyte surfactants[J]. Journal of Colloid and Interface Science, 337, 66-674(2009). http://www.sciencedirect.com/science/article/pii/S0021979709006122

    [24] Nakamura M, Iwanaga S, Henmi C et al. Biomatrices and biomaterials for future developments of bioprinting and biofabrication[J]. Biofabrication, 2, 014110(2010). http://www.ncbi.nlm.nih.gov/pubmed/20811125

    [25] Dias A D, Kingsley D M, Corr D T. Recent advances in bioprinting and applications for biosensing[J]. Biosensors, 4, 111-136(2014). http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.3390/bios4020111

    [26] Komlev V S, Popov V K, Mironov A V et al. 3D printing of octacalcium phosphate bone substitutes[J]. Frontiers in Bioengineering and Biotechnology, 3, 81-81(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4459096/

    [27] Zhu W, Ma X Y, Gou M L et al. 3D printing of functional biomaterials for tissue engineering[J]. Current Opinion in Biotechnology, 40, 103-112(2016). http://europepmc.org/abstract/MED/27043763

    [28] Hamad E M, Bilatto S E, Adly N Y et al. Inkjet printing of UV-curable adhesive and dielectric inks for microfluidic devices[J]. Lab on a Chip, 16, 70-74(2016). http://www.ncbi.nlm.nih.gov/pubmed/26627046

    [29] Tran V T, Wei Y F, Yang H Y et al. All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device[J]. Nanotechnology, 28, 095204(2017). http://europepmc.org/abstract/MED/28135204

    [30] Recheis W, Weber G W, Schafer K et al. New methods and techniques in anthropology[J]. Coll Antropol, 23, 495-509(1999). http://www.ncbi.nlm.nih.gov/pubmed/10646224

    [31] Gronet P M, Waskewicz G A, Richardson C. Preformed acrylic cranial implants using fused deposition modeling: A clinical report[J]. The Journal of Prosthetic Dentistry, 90, 429-433(2003). http://www.sciencedirect.com/science/article/pii/S002239130300605X

    [32] Negus I S, Holmes R B, Jordan K C et al. Technical note: Development of a 3D printed subresolution sandwich phantom for validation of brain SPECT analysis[J]. Medical Physics, 43, 5020(2016). http://www.ncbi.nlm.nih.gov/pubmed/27587032/

    [33] Hutmacher D W, Schantz T, Zein I et al. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling[J]. Journal of Biomedical Materials Research, 55, 203-216(2001). http://www.ncbi.nlm.nih.gov/pubmed/11255172

    [34] Hott M E, Megerian C A, Beane R et al. Fabrication of tissue engineered tympanic membrane patches using computer-aided design and injection molding[J]. Laryngoscope, 114, 1290-1295(2004). http://europepmc.org/abstract/MED/15235363

    [35] Schrank E S, Hitch L, Wallace K et al. Assessment of a virtual functional prototyping process for the rapid manufacture of passive-dynamic ankle-foot orthoses[J]. Journal of Biomechanical Engineering, 135, 101011(2013). http://www.ncbi.nlm.nih.gov/pubmed/23774786

    [36] Wong J Y, Pfahnl A C. 3D printed surgical instruments evaluated by a simulated crew of a mars mission[J]. Aerospace Medicine and Human Performance, 87, 806-810(2016). http://www.ncbi.nlm.nih.gov/pubmed/27634701

    [37] Nowicki M A, Castro N J, Plesniak M W et al. 3D printing of novel osteochondral scaffolds with graded microstructure[J]. Nanotechnology, 27, 414001(2016). http://europepmc.org/abstract/MED/27606933

    [38] Chen Q Y, Mangadlao J D, Wallat J et al. 3D printing biocompatible polyurethane/poly(lactic acid)/graphene oxide nanocomposites: Anisotropic properties[J]. ACS Applied Materials Interfaces, 9, 4015-4023(2017). http://pubs.acs.org/doi/suppl/10.1021/acsami.6b11793

    [39] Ligon S C, Liska R, Stampfl J et al. Polymers for 3D printing and customized additive manufacturing[J]. Chemical Reviews, 117, 10212-10290(2017). http://europepmc.org/abstract/MED/28756658

    [40] Sears N, Dhavalikar P, Whitely M et al. Fabrication of biomimetic bone grafts with multi-material 3D printing[J]. Biofabrication, 9, 025020(2017). http://europepmc.org/abstract/MED/28530207

    [41] Sander I M. McGoldrick M T, Helms M N, et al. Three-dimensional printing of X-ray computed tomography datasets with multiple materials using open-source data processing[J]. Anatomical Sciences Education, 10, 383-391(2017). http://www.ncbi.nlm.nih.gov/pubmed/28231405

    [42] Lin X C, Liu H G. Continuous liquid interface production 3D printing technology and its application in fabrication of architecture models[J]. Acta Optica Sinica, 36, 0816002(2016).

    [43] Lin X C, Liu H G. Continuous 3D solidification technology and its application in building model making[J]. Chinese Journal of Lasers, 43, 0715002(2016).

    [44] Yakovlev A V, Milichko V A, Vinogradov V V et al. Inkjet color printing by interference nanostructures[J]. ACS Nano, 10, 3078-3086(2016). http://www.ncbi.nlm.nih.gov/pubmed/26805775

    [45] Dickey M D. Stretchable and soft electronics using liquid metals[J]. Advanced Materials, 29, 1606425(2017). http://www.ncbi.nlm.nih.gov/pubmed/28417536

    [46] Pedde R D, Mirani B, Navaei A et al. Emerging biofabrication strategies for engineering complex tissue constructs[J]. Advanced Materials, 29, 1606061(2017). http://onlinelibrary.wiley.com/doi/10.1002/adma.201606061/full

    [47] Kroll E, Artzi D. Enhancing aerospace engineering students' learning with 3D printing wind-tunnel models[J]. Rapid Prototyping Journal, 17, 393-402(2011).

    [48] Walther G. Printing insecurity? The security implications of 3D-printing of weapons[J]. Science and Engineering Ethics, 21, 1435-1445(2015). http://europepmc.org/articles/PMC4656707/

    [49] Tiimob B J, Mwinyelle G, Abdela W et al. Nanoengineered eggshell-silver tailored copolyester polymer blend film with antimicrobial properties[J]. Journal of Agricultural and Food Chemistry, 65, 1967-1976(2017). http://europepmc.org/abstract/MED/28206760

    [50] Cooke M N, Fisher J P, Dean D et al. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth[J]. Journal of Biomedical Materials Research—Part B: Applied Biomaterials, 64, 65-69(2003). http://onlinelibrary.wiley.com/doi/10.1002/jbm.b.10485/full

    [51] Petrochenko P E, Torgersen J, Gruber P et al. Laser 3D printing with sub-microscale resolution of porous elastomeric scaffolds for supporting human bone stem cells[J]. Advanced Healthcare Materials, 4, 739-747(2015). http://www.ncbi.nlm.nih.gov/pubmed/25522214?dopt=Abstract

    [52] Novitskaya E, Ruestes C J, Porter M M et al. Reinforcements in avian wing bones: Experiments, analysis, and modeling[J]. Journal of the Mechanical Behavior of Biomedical Materials, 76, 85-96(2017). http://www.ncbi.nlm.nih.gov/pubmed/28734609

    [53] Runte C, Dirksen D, Delere H et al. Optical data acquisition for computer-assisted design of facial prostheses[J]. International Journal of Prosthodontics, 15, 129-132(2002). http://www.ncbi.nlm.nih.gov/pubmed/11951801

    [54] Schubert C, van Langeveld M C, Donoso L A. Innovations in 3D printing: A 3D overview from optics to organs[J]. British Journal of Ophthalmology, 98, 159-161(2014).

    [55] Fan B, Chen H, Sun Y J et al. Clinical effects of 3-D printing-assisted personalized reconstructive surgery for blowout orbital fractures[J]. Graefe's Archive for Clinical and Experimental Ophthalmology, 255, 2051-2057(2017). http://europepmc.org/abstract/MED/28786025

    [56] Hsu L H, Huang G F, Lu C T et al. The development of a rapid prototyping prosthetic socket coated with a resin layer for transtibial amputees[J]. Prosthetics and Orthotics International, 34, 37-45(2010). http://www.tandfonline.com/doi/full/10.3109/03093640902911820

    [57] Zhang Q, Zhang K, Hu G K. Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique[J]. Scientific Reports, 6, 22431(2016). http://www.ncbi.nlm.nih.gov/pubmed/26926357

    [58] Park S H, Yun B G, Won J Y et al. New application of three-dimensional printing biomaterial in nasal reconstruction[J]. Laryngoscope, 127, 1036-1043(2017). http://onlinelibrary.wiley.com/doi/10.1002/lary.26400/full

    [59] Tan Y, Richards D J, Trusk T C et al. 3D printing facilitated scaffold-free tissue unit fabrication[J]. Biofabrication, 6, 024111(2014). http://www.ncbi.nlm.nih.gov/pubmed/24717646

    [60] Lade R K, Hippchen E J, Macosko C W et al. Dynamics of capillary-driven flow in 3D printed open microchannels[J]. Langmuir, 33, 2949-2964(2017). http://europepmc.org/abstract/MED/28274121

    [61] Shukla M R, Singh A S, Piunno K et al. Application of 3D printing to prototype and develop novel plant tissue culture systems[J]. Plant Methods, 13, 6-15(2017). http://plantmethods.biomedcentral.com/articles/10.1186/s13007-017-0156-8

    [62] Foppoli A, Maroni A, Cerea M et al. Dry coating of solid dosage forms: an overview of processes and applications[J]. Drug Development and Industrial Pharmacy, 43, 1919-1931(2017). http://www.ncbi.nlm.nih.gov/pubmed/28707494

    [63] Li J P, Chen M J, Fan X Q et al. Recent advances in bioprinting techniques: Approaches, applications and future prospects[J]. Journal of Translational Medicine, 14, 271(2016). http://pubmedcentralcanada.ca/pmcc/articles/PMC5028995/

    [64] Xu Q H, Liao H F. 3D printing technology and its potential application in ophthalmology[J]. Recent Advances in Ophthalmology, 36, 295-297(2016).

    [65] Chen R R, Bi Y L. Application of three-dimensional printing technique in ophthalmology[J]. Journal of Tongji University (Medical Science), 37, 119-123(2016).

    [66] Chen Y P, Yang R S, Liu L et al. Biological laser printing technology and its applications[J]. Laser & Optoelectronics Progress, 53, 040001(2016).

    [67] Kozakiewicz M, Elgalal M, Loba P et al. Clinical application of 3D pre-bent titanium implants for orbital floor fractures[J]. Journal of Cranio-Maxillofac Surgery, 37, 229-234(2009). http://europepmc.org/abstract/MED/19186068

    [68] Lim C G, Campbell D I, Clucas D M. Rapid prototyping technology in orbital floor reconstruction: Application in three patients[J]. Craniomaxillofacical Trauma & Reconstruction, 7, 143-146(2014). http://www.ams.org/mathscinet-getitem?mr=3162526

    [69] Mourits D L, Wolff J, Forouzanfar T et al. 3D orbital reconstruction in a patient with microphthalmos and a large orbital cyst-A case report[J]. Ophthalmic Genet, 37, 233-237(2016). http://www.ncbi.nlm.nih.gov/pubmed/26760736

    [70] Ospina P D, Díaz M C, Plaza J P. A review in innovation in ocular prostheses and visual implants: New biomaterials and neuro-implants is the challenge for the visual care[J]. Journal of Ocular Diseases and Therapeutics, 2, 9-16(2014).

    [71] Li J, Nie L, Li Z et al. Maximizing modern distribution of complex anatomical spatial information: 3D reconstruction and rapid prototype production of anatomical corrosion casts of human specimens[J]. Anatomical Sciences Education, 5, 330-339(2012).

    [72] Singh A D, Topham A. Incidence of uveal melanoma in the United States: 1973-1997[J]. Ophthalmology, 110, 956-961(2003). http://journals.lww.com/evidence-based-ophthalmology/Fulltext/2003/10000/Incidence_of_Uveal_Melanoma_in_the_United_States_.12.aspx

    [73] Furdova A, Sramka M, Thurzo A. Early experiences of planning stereotactic radiosurgery using 3D printed models of eyes with uveal melanomas[J]. Clinical Ophthalmology, 11, 267-271(2017). http://europepmc.org/articles/PMC5298814/

    [74] Leong K F, Phua K K, Chua C K et al. Fabrication of porous polymeric matrix drug delivery devices using the selective laser sintering technique[J]. Journal of Engineering in Medicine, 215, 191-201(2001). http://europepmc.org/abstract/MED/11382078

    [75] Clinkenbeard R E, Johnson D L, Parthasarathy R et al. Replication of human tracheobronchial hollow airway models using a selective laser sintering rapid prototyping technique[J]. AIHA Journal, 63, 141-150(2002). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=AIHPRO002001000001000177000001&idtype=cvips&gifs=Yes

    [76] Zhou Z, Buchanan F, Mitchell C et al. Printability of calcium phosphate: Calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique[J]. Materials Science and Engineering, 38, 1-10(2014). http://www.sciencedirect.com/science/article/pii/S0928493114000356

    [77] Goyanes A, Wang J, Buanz A et al. 3D printing of medicines: Engineering novel oral devices with unique design and drug release characteristics[J]. Molecular Pharmaceutics, 12, 4077-4084(2015). http://europepmc.org/abstract/MED/26473653

    [78] Hogstrom K R, Almond P R. Review of electron beam therapy physics[J]. Physics in Medicine & Biology, 51, R455-R489(2006). http://europepmc.org/abstract/MED/16790918

    [79] Lukowiak M, Jezierska K, Boehlke M et al. Utilization of a 3D printer to fabricate boluses used for electron therapy of skin lesions of the eye canthi[J]. Journal of Applied Clinical Medical Physics, 18, 76-81(2017). http://onlinelibrary.wiley.com/doi/10.1002/acm2.12013/pdf

    [80] Will J C, German R R, Schuman E et al. Patient adherence to guidelines for diabetes eye care: Results from the diabetic eye disease follow-up study[J]. American Journal of Public Health, 84, 1669-1671(1994). http://www.ncbi.nlm.nih.gov/pubmed/7943494

    [81] Varma R, Ying-Lai M, Francis B A et al. Prevalence of open-angle glaucoma and ocular hypertension in Latinos: The Los Angeles Latino Eye study[J]. Ophthalmology, 111, 1439-1448(2004). http://www.ncbi.nlm.nih.gov/pubmed/15288969

    [82] Liu R, Qi Y, Zheng X et al. Flood-illuminated adaptive optics ophthalmoscope with a single curved relay mirror[J]. Photonics Research, 1, 124-129(2013). http://www.opticsjournal.net/Articles/Abstract?aid=OJ131108000005WtZv3y

    [83] Liu R X, Zheng X L, Li D Y et al. Retinal axial focusing and multi-layer imaging with a liquid crystal adaptive optics camera[J]. Chinese Physics B, 23, 094211(2014). http://www.cqvip.com/QK/85823X/201409/662184566.html

    [84] Chiong H. 3D printing and ophthalmology for the community[J]. Journal of Cytology Histology, 6, 1000e116(2015). http://www.researchgate.net/publication/281404297_3D_printing_and_ophthalmology_for_community

    [85] Jansen M, Geraymovych E, Harper C A. A metallic intraocular foreign body in a young man[J]. Ophthalmology, 124, 1125(2017). http://europepmc.org/abstract/MED/28734328

    [86] Khmyrov R, Grigoriev S, Okunkova A et al. On the possibility of selective laser melting of quartz glass[J]. Physics Procedia, 56, 345-356(2014). http://www.sciencedirect.com/science/article/pii/S1875389214002624

    [87] Khmyrov R, Protasov C, Grigoriev S et al. Crack-free selective laser melting of silica glass: Single beads and monolayers on the substrate of the same material[J]. The International Journal of Advanced Manufacturing Technology, 85, 1461-1469(2016). http://link.springer.com/article/10.1007/s00170-015-8051-9

    [88] Debellemanière G, Flores M, Montard M et al. Three-dimensional printing of optical lenses and ophthalmic surgery: Challenges and perspectives[J]. Journal of Refractive Surgery, 32, 201-204(2016). http://www.ncbi.nlm.nih.gov/pubmed/27027628

    [89] van de Vrie R, Blomaard R. -07-01[P]. Biskop J. Method of printing an optical element: US20160003977.(2016).

    [90] Deubel M, von Freymann G, Wegener M et al. . Direct laser writing of three-dimensional photonic-crystal templates for telecommunications[J]. Nature Materials, 3, 444-447(2004). http://europepmc.org/abstract/MED/15195083

    [91] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2, 219-225(2008). http://www.opticsinfobase.org/ol/abstract.cfm?uri=BGPP-2010-BWB4

    [92] Thiele S, Arzenbacher K, Gissibl T et al. 3D-printed eagle eye: Compound microlens system for foveated imaging[J]. Science Advances, 3, e1602655(2017). http://europepmc.org/abstract/MED/28246646

    Duan Musen, Wu Fan, Liu Ruixue. Application of Laser Additive Manufacturing Technology in Ophthalmology[J]. Laser & Optoelectronics Progress, 2018, 55(1): 11406
    Download Citation