• Optical Instruments
  • Vol. 41, Issue 5, 76 (2019)
Tian TANG, Jie XU, Xin WANG, and Baozhong MU
Author Affiliations
  • School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • show less
    DOI: 10.3969/j.issn.1005-5630.2019.05.012 Cite this Article
    Tian TANG, Jie XU, Xin WANG, Baozhong MU. Study of X-ray backscatter system based on flying-spot scanning[J]. Optical Instruments, 2019, 41(5): 76 Copy Citation Text show less
    Schematic of flying-spot scanning X-ray backscatter imaging
    Fig. 1. Schematic of flying-spot scanning X-ray backscatter imaging
    Schematic of flying-spot scanning mechanism
    Fig. 2. Schematic of flying-spot scanning mechanism
    Schematic diagram of the chopper wheel disc
    Fig. 3. Schematic diagram of the chopper wheel disc
    Relationship between plastic scintillator thickness and deposition efficiency
    Fig. 4. Relationship between plastic scintillator thickness and deposition efficiency
    Experimental prototype of flying-spot scanning X-ray backscatter imaging
    Fig. 5. Experimental prototype of flying-spot scanning X-ray backscatter imaging
    Test results of horizontal direction resolution test
    Fig. 6. Test results of horizontal direction resolution test
    Vertical side boundary resolution test results
    Fig. 7. Vertical side boundary resolution test results
    Photo and experimental result of a toy car
    Fig. 8. Photo and experimental result of a toy car
    Photo and experimental result of a ceramic cup
    Fig. 9. Photo and experimental result of a ceramic cup
    Horizontal resolution of the ceramic cup
    Fig. 10. Horizontal resolution of the ceramic cup
    nα/(°) R/mm r/mm m/kg J/(kg·mm2)
    323.7121.260.62.924 119.2
    423.7148.5105.03.547 643.2
    623.7210.0181.95.4145 701.2
    823.7274.4253.58.1355 638.5
    Table 1. Comparison of structural parameters of several sets of chopper wheels
    nb/mm R/mm r/mm m/kg J/(kg·mm2)
    40.5153.588454 868.5
    Table 2. Chopper wheel specific parameters
    探测器类型探测能区能量分辨率温度特性探测效率时间分辨率/s
    气体探测器500 eV~15 keV受影响小10−4~10−5
    半导体探测器500 eV~200 keV低温环境10−4~10−8
    闪烁体探测器1 eV~1 GeV较高常温环境10−4~10−9
    Table 3. X-ray detector performance
    闪烁体密度/(g·cm−3折射率发光峰值波长/nm衰减时间/ns相对发光强度潮解程度
    NaI(TI)3.671.85410230100易潮解
    BGO7.132.1548030015不潮解
    CsI(TI)4.511.805301 00045~50轻微潮解
    Pure CsI4.511.8031010<10轻微潮解
    BaF24.881.58220/3250.9/63020轻微潮解
    GSO : Ce6.711.85310/4303020不潮解
    Plastic1.031.584002.025不潮解
    LSO7.351.824204070不潮解
    PWO8.282.16470150.7不潮解
    YAP5.551.973803040不潮解
    Table 4. Characteristics of commonly used scintillator materials
    光源功率/W外边界分辨率/mm钨钢边界分辨率/mm
    60 kV100 kV150 kV60 kV100 kV150 kV
    3002.1562.6493.5932.3802.0112.386
    5001.9992.6712.1292.2862.5452.895
    7501.9281.8811.7322.2624.7243.012
    Table 5. Boundary resolution of horizontal direction of PMMA sample
    光源功率/W外边界分辨率/mm钨钢边界分辨率/mm
    60 kV100 kV150 kV60 kV100 kV150 kV
    3002.1562.6493.5932.3802.0112.386
    5001.9992.6712.1292.2862.5452.895
    7501.9281.8811.7322.2624.7243.012
    Table 6. Boundary resolution of vertical direction of PMMA sample
    光源功率/WPSNRIV
    60 kV100 kV150 kV60 kV100 kV150 kV
    30033.27731.62727.8836.431e+061.313e+072.426e+07
    50031.23628.40724.1001.173e+072.871e+075.201e+07
    75029.83026.84621.5752.039e+075.520e+071.030e+08
    Table 7. PSNR and IV of toy-car images