• Journal of Semiconductors
  • Vol. 44, Issue 8, 080501 (2023)
Xinge Liu1、†, Chengfeng Ma1、†, Hao Xin1、*, and Liming Ding2、**
Author Affiliations
  • 1State Key Laboratory for Organic Electronics and Information Displays, College of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
  • 2Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
  • show less
    DOI: 10.1088/1674-4926/44/8/080501 Cite this Article
    Xinge Liu, Chengfeng Ma, Hao Xin, Liming Ding. Solution-processed CuIn(S,Se)2 solar cells on transparent electrode offering 9.4% efficiency[J]. Journal of Semiconductors, 2023, 44(8): 080501 Copy Citation Text show less
    References

    [1] S Suresh, A R Uhl. Present status of solution-processing routes for Cu(In,Ga)(S,Se)2 solar cell absorbers. Adv Energy Mater, 11, 2003743(2021).

    [2] M Nakamura, K Yamaguchi, Y Kimoto et al. Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%. IEEE J Photovolt, 9, 1863(2019).

    [3] J Ramanujam, U P Singh. Copper indium gallium selenide based solar cells–a review. Energy Environ Sci, 10, 1306(2017).

    [4] I Repins, M A Contreras, B Egaas et al. 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog Photovolt Res Appl, 16, 235(2008).

    [5] A Chirilă, P Reinhard, F Pianezzi et al. Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nat Mater, 12, 1107(2013).

    [6] J J Jiang, R Giridharagopal, E Jedlicka et al. Highly efficient copper-rich chalcopyrite solar cells from DMF molecular solution. Nano Energy, 69, 104438(2020).

    [7] C F Ma, C X Xiang, X G Liu et al. Over 12% efficient CuIn(S,Se)2 solar cell with the absorber fabricated from dimethylformamide solution by doctor-blading in ambient air. Sol RRL, 6, 2200150(2022).

    [8] P Arnou, M F A M van Hest, C S Cooper et al. Hydrazine-free solution-deposited CuIn(S,Se)2 solar cells by spray deposition of metal chalcogenides. ACS Appl Mater Interfaces, 8, 11893(2016).

    [9] X Z Lin, R Klenk, L Wang et al. 11.3% efficiency Cu(In,Ga)(S,Se)2 thin film solar cells via drop-on-demand inkjet printing. Energy Environ Sci, 9, 2037(2016).

    [10] S H Moon, S J Park, Y J Hwang et al. Printable, wide band-gap chalcopyrite thin films for power generating window applications. Sci Rep, 4, 4408(2014).

    [11] V Ben Chu, S J Park, G S Park et al. Semi-transparent thin film solar cells by a solution process. Korean J Chem Eng, 33, 880(2016).

    [12] Y Gao, G C Yin, Y Li et al. 8.0% efficient submicron CuIn(S,Se)2 solar cells on Sn: In2O3 back contact via a facile solution process. ACS Appl Energy Mater, 5, 12252(2022).

    [13] J J Jiang, S T Yu, Y C Gong et al. 10.3% efficient CuIn(S,Se)2 solar cells from DMF molecular solution with the absorber selenized under high argon pressure. Sol RRL, 2, 1800044(2018).

    [14] Y G Zhou, C X Xiang, Q Dai et al. 11.4% efficiency kesterite solar cells on transparent electrode. Adv Energy Mater, 13, 2370079(2023).

    [15] S T Yu, B Y Li, J J Jiang et al. Solution-processed chalcopyrite solar cells: The grain growth mechanism and the effects of Cu/In mole ratio. Adv Energy Mater, 12, 2103644(2022).

    [16] Y Z Wang, S S Lv, Z C Li. Review on incorporation of alkali elements and their effects in Cu(In,Ga)Se2 solar cells. J Mater Sci Technol, 96, 179(2022).

    [17] W Witte, D Abou-Ras, K Albe et al. Gallium gradients in Cu(In,Ga)Se2 thin-film solar cells. Prog Photovolt Res Appl, 23, 717(2015).

    Xinge Liu, Chengfeng Ma, Hao Xin, Liming Ding. Solution-processed CuIn(S,Se)2 solar cells on transparent electrode offering 9.4% efficiency[J]. Journal of Semiconductors, 2023, 44(8): 080501
    Download Citation