• Chinese Optics Letters
  • Vol. 22, Issue 2, 022501 (2024)
Qiushuang Chen1、2, Li Chen1、2、*, Cong Chen1、2, Ge Gao1, Wei Guo1、2, and Jichun Ye1、2、**
Author Affiliations
  • 1Ningbo Institute of Materials Technology and Engineering, Ningbo 315201, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/COL202422.022501 Cite this Article Set citation alerts
    Qiushuang Chen, Li Chen, Cong Chen, Ge Gao, Wei Guo, Jichun Ye. Carrier transport barrier in AlGaN-based deep ultraviolet LEDs on offcut sapphire substrates[J]. Chinese Optics Letters, 2024, 22(2): 022501 Copy Citation Text show less
    References

    [1] M. Kneissl, J. Rass. III-Nitride Ultraviolet Emitters: Technology and Application(2015).

    [2] K. Song, M. Mohseni, F. Taghipour. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: a review. Water Res., 94, 341(2016).

    [3] D. Li, K. Jiang, X. Sun et al. AlGaN photonics: recent advances in materials and ultraviolet devices. Adv. Opt. Photonics, 10, 43(2018).

    [4] M. Kneissl, T.-Y. Seong, J. Han et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photonics, 13, 233(2019).

    [5] H. Yu, M. H. Memon, D. Wang et al. AlGaN-based deep ultraviolet micro-LED emitting at 275 nm. Opt. Lett., 46, 3271(2021).

    [6] H. Yu, M. H. Memon, H. Jia et al. Deep-ultraviolet LEDs incorporated with SiO2‐based microcavities toward high-speed ultraviolet light communication. Adv. Opt. Mater., 10, 2201738(2022).

    [7] Y. Taniyasu, M. Kasu, T. Makimoto. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature, 441, 325(2006).

    [8] J. Zhang, Y. Gao, L. Zhou et al. Surface hole gas enabled transparent deep ultraviolet light-emitting diode. Semicond. Sci. Technol., 33, 07LT01(2018).

    [9] C. Pernot, M. Kim, S. Fukahori et al. Improved efficiency of 255–280 nm AlGaN-Based light-emitting diodes. Appl. Phys. Express, 3, 061004(2010).

    [10] S. Nakamura. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science, 281, 956(1998).

    [11] X. Yang, J. Zhang, X. Wang et al. Enhance the efficiency of green-yellow LED by optimizing the growth condition of preparation layer. Superlattices Microstruct., 141, 106459(2020).

    [12] N. Susilo, S. Hagedorn, D. Jaeger et al. AlGaN-based deep UV LEDs grown on sputtered and high temperature annealed AlN/sapphire. Appl. Phys. Lett., 112, 041110(2018).

    [13] K. Ban, J.-I. Yamamoto, K. Takeda et al. Internal quantum efficiency of whole-composition-range AlGaN multiple quantum wells. Appl. Phys. Express, 4, 052101(2011).

    [14] T.-Y. Wang, C.-T. Tasi, C.-F. Lin et al. 85% internal quantum efficiency of 280-nm AlGaN multiple quantum wells by defect engineering. Sci. Rep., 7, 14422(2017).

    [15] S. Chichibu, T. Azuhata, T. Sota et al. Luminescences from localized states in InGaN epilayers. Appl. Phys. Lett., 70, 2822(1997).

    [16] S. Kazazis, E. Papadomanolaki, E. Iliopoulos. Tuning carrier localization in In-rich InGaN alloys: correlations between growth kinetics and optical properties. J. Appl. Phys., 127, 225701(2020).

    [17] Y. Li, Z. Deng, Z. Ma et al. Visualizing carrier transitions between localization states in a InGaN yellow–green light-emitting-diode structure. J. Appl. Phys., 126, 095705(2019).

    [18] K. O’Donnell, R. Martin, P. G. Middleton. Origin of luminescence from InGaN diodes. Phys. Rev. Lett., 82, 237(1999).

    [19] H. Sun, J. Xu, N. Xie et al. Controlled bunching approach for achieving high efficiency active region in AlGaN-based deep ultraviolet light-emitting devices with dual-band emission. Appl. Phys. Lett., 116, 212102(2020).

    [20] C. He, H. Wu, C. Jia et al. Low-defect-density aluminum nitride (AlN) thin films realized by zigzag macrostep-induced dislocation redirection. Cryst. Growth Des., 21, 3394(2021).

    [21] H. Xu, J. Jiang, M. Sheikhi et al. Single peak deep ultraviolet emission and high internal quantum efficiency in AlGaN quantum wells grown on large miscut sapphire substrates. Superlattices Microstruct., 129, 20(2019).

    [22] H. Sun, S. Mitra, R. C. Subedi et al. Unambiguously enhanced ultraviolet luminescence of AlGaN wavy quantum well structures grown on large misoriented sapphire substrate. Adv. Funct. Mater., 29, 1905445(2019).

    [23] M. Kaneda, C. Pernot, Y. Nagasawa et al. Uneven AlGaN multiple quantum well for deep-ultraviolet LEDs grown on macrosteps and impact on electroluminescence spectral output. Jpn. J. Appl. Phys., 56, 061002(2017).

    [24] M. Hayakawa, Y. Hayashi, S. Ichikawa et al. Enhanced radiative recombination probability in AlGaN quantum wires on (0001) vicinal surface. Proc. SPIE, 9926, 99260S(2016).

    [25] Y. Yue, M. Sun, X. Li et al. Quality improvement mechanism of sputtered AlN films on sapphire substrates with high-miscut-angles along different directions. CrystEngComm, 23, 6871(2021).

    [26] H. Kojima, T. Ogasawara, M. Kim et al. Sapphire substrate off-angle and off-direction dependences on characteristics of AlGaN-based deep ultraviolet light-emitting diodes. Jpn. J. Appl. Phys., 58, SC1025(2019).

    [27] K. Kojima, Y. Nagasawa, A. Hirano et al. Carrier localization structure combined with current micropaths in AlGaN quantum wells grown on an AlN template with macrosteps. Appl. Phys. Lett., 114, 011102(2019).

    [28] Y. Nagasawa, R. Sugie, K. Kojima et al. Two-dimensional analysis of the nonuniform quantum yields of multiple quantum wells for AlGaN-based deep-ultraviolet LEDs grown on AlN templates with dense macrosteps using cathodoluminescence spectroscopy. J. Appl. Phys., 126, 215703(2019).

    [29] Y. Nagasawa, A. Hirano, M. Ippommatsu et al. Detailed analysis of Ga-rich current pathways created in an n-Al0.7Ga0.3N layer grown on an AlN template with dense macrosteps. Appl. Phys. Express, 13, 124001(2020).

    [30] Y. Nagasawa, K. Kojima, A. Hirano et al. Discrete wavelengths observed in electroluminescence originating from Al1/2Ga1/2N and Al1/3Ga2/3N created in nonflat AlGaN quantum wells. J. Phys. D Appl. Phys., 54, 485107(2021).

    [31] H. Xu, J. Jiang, L. Chen et al. Direct demonstration of carrier distribution and recombination within step-bunched UV-LEDs. Photonics Res., 9, 764(2021).

    [32] I. Bryan, Z. Bryan, S. Mita et al. The role of surface kinetics on composition and quality of AlGaN. J. Cryst. Growth, 451, 65(2016).

    [33] I. Bryan, Z. Bryan, S. Mita et al. Surface kinetics in AlN growth: a universal model for the control of surface morphology in III-nitrides. J. Cryst. Growth, 438, 81(2016).

    [34] M. A. Moram, M. E. Vickers. X-ray diffraction of III-nitrides. Rep. Prog. Phys., 72, 036502(2009).

    [35] T. T. Luong, Y.-T. Ho, Y. Wong et al. Phase separation-suppressed and strain-modulated improvement of crystalline quality of AlGaN epitaxial layer grown by MOCVD. Microelectron. Reliab., 83, 286(2018).

    [36] M. Hayakawa, S. Ichikawa, M. Funato et al. AlxGa1-xN‐based quantum wells fabricated on macrosteps effectively suppressing nonradiative recombination. Adv. Opt. Mater., 7, 1801106(2019).

    [37] Y. Nagasawa, K. Kojima, A. Hirano et al. Dual-peak electroluminescence spectra generated from Aln/12Ga1-n/12N (n = 2, 3, 4) for AlGaN-based LEDs with nonflat quantum wells. J. Phys. D Appl. Phys., 55, 255102(2022).

    [38] M. Feneberg, S. Osterburg, K. Lange et al. Band gap renormalization and Burstein-Moss effect in silicon- and germanium-doped wurtzite GaN up to 1020 cm−3. Phys. Rev. B, 90, 075203(2014).

    [39] H. Jeong, H. J. Jeong, H. M. Oh et al. Carrier localization in In-rich InGaN/GaN multiple quantum wells for green light-emitting diodes. Sci. Rep., 5, 9373(2015).

    [40] X. A. Cao, E. B. Stokes, P. M. Sandvik et al. Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes. IEEE Electron Device Lett., 23, 535(2002).

    [41] S. W. Lee, D. C. Oh, H. Goto et al. Origin of forward leakage current in GaN-based light-emitting devices. Appl. Phys. Lett., 89, 132117(2006).

    [42] E. Jung, J. K. Lee, M. S. Kim et al. Leakage current analysis of GaN-based light-emitting diodes using a parasitic diode model. IEEE Trans. Electron Devices, 62, 3322(2015).

    [43] H. Qian, K. B. Lee, S. H. Vajargah et al. Characterization of p-GaN1−xAsx/n-GaN PN junction diodes. Semicond. Sci. Technol., 31, 065020(2016).

    [44] M. Hou, Z. Qin, L. Zhang et al. Excitonic localization at macrostep edges in AlGaN/AlGaN multiple quantum wells. Superlattices Microstruct., 104, 397(2017).

    Qiushuang Chen, Li Chen, Cong Chen, Ge Gao, Wei Guo, Jichun Ye. Carrier transport barrier in AlGaN-based deep ultraviolet LEDs on offcut sapphire substrates[J]. Chinese Optics Letters, 2024, 22(2): 022501
    Download Citation