• Chinese Optics Letters
  • Vol. 20, Issue 1, 012701 (2022)
Shengfa Fan1、2, Yihong Qi1、*, Yueping Niu1, and Shangqing Gong1
Author Affiliations
  • 1School of Physics, East China University of Science and Technology, Shanghai 200237, China
  • 2School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
  • show less
    DOI: 10.3788/COL202220.012701 Cite this Article Set citation alerts
    Shengfa Fan, Yihong Qi, Yueping Niu, Shangqing Gong. Nonreciprocal transmission of multi-band optical signals in thermal atomic systems[J]. Chinese Optics Letters, 2022, 20(1): 012701 Copy Citation Text show less
    References

    [1] K. Xia, G. Lu, G. Lin, Y. Cheng, Y. Niu, S. Gong, J. Twamley. Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling. Phys. Rev. A, 90, 043802(2014).

    [2] F. Ruesink, M.-A. Miri, A. Alù, E. Verhagen. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun., 7, 13662(2016).

    [3] F. Ruesink, J. P. Mathew, M.-A. Miri, A. Alù, E. Verhagen. Optical circulation in a multimode optomechanical resonator. Nat. Commun., 9, 1798(2018).

    [4] M. Scheucher, A. Hilico, E. Will, J. Volz, A. Rauschenbeutel. Quantum optical circulator controlled by a single chirally coupled atom. Science, 354, 1577(2016).

    [5] X. W. Xu, Y. Li. Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems. Phys. Rev. A, 91, 053854(2015).

    [6] K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, O. Painter. Generalized nonreciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys., 13, 465(2017).

    [7] S. J. M. Habraken, K. Stannigel, M. D. Lukin, P. Zoller, P. Rabl. Continuous mode cooling and phonon routers for phononic quantum networks. New J. Phys., 14, 115004(2012).

    [8] G. Li, X. Xiao, Y. Li, X. Wang. Tunable optical nonreciprocity and a phonon-photon router in an optomechanical system with coupled mechanical and optical modes. Phys. Rev. A, 97, 023801(2018).

    [9] H. Zhang, J. Zhang, S. Sun, D. Wu, R. Zhao, R. Wang, S. Dai. Self-mode-locking and self-phase modulation in Tm-doped double clad fiber laser for pulse peak power enhancement and multi-wavelength generation. Opt. Laser Technol., 141, 107128(2021).

    [10] W. Luo, Y. Ren, J. Feng, X. Li, S. Lv, M. Qu, L. Jing, X. Chen. Three-dimensional Ag2S cubes for switchable multi-wavelength ultrashort pulse application. Nanotechnology, 32, 355202(2021).

    [11] P. Huang, X. Shu, Z. Zhang. Multi-wavelength random fiber laser with switchable wavelength interval. Opt. Express, 28, 28686(2020).

    [12] T. Zhai, X. Wu, F. Tong, S. Li, M. Wang, X. Zhang. Multi-wavelength lasing in a beat structure. Appl. Phys. Lett., 109, 261906(2016).

    [13] B. Guo, X. Guo, L. Tang, W. Yang, Q. Chen, Z. Ren. Ultra-long-period grating-based multi-wavelength ultrafast fiber laser. Chin. Opt. Lett., 19, 071405(2021).

    [14] Y. An, B. Sun, P. Wang, L. Xiao, H. Liu, H. Xie. A 1×20 MEMS mirror array with large scan angle and low driving voltage for optical wavelength-selective switches. Sensor. Actuat. A, 324, 112689(2021).

    [15] Y. Doi, T. Yoshimatsu, Y. Nakanishi, S. Tsunashima, M. Nada, S. Kamei, K. Sano, Y. Ishii. Receiver integration with arrayed waveguide gratings toward multi-wavelength data-centric communications and computing. Appl. Sci., 10, 8205(2020).

    [16] H. W. Jones, M. K. Burdette, Y. Bandera, E. Zhang, I. K. Foulger, J. Binder, J. Weick, S. H. Foulger. Sequential intraparticle Förster resonance energy transfer for multi-wavelength bioimaging. Opt. Mater. Express, 11, 1742(2021).

    [17] M. Piniard, B. Sorrente, G. Hug, P. Picart. Theoretical analysis of surface-shape-induced decorrelation noise in multi-wavelength digital holography. Opt. Express, 29, 14720(2021).

    [18] C. Rao, L. Zhu, N. Gu, X. Rao, L. Zhang, H. Bao, L. Kong, Y. Guo, L. Zhong, X. Ma, M. Li, C. Wang, X. Zhang, X. Fan, D. Chen, Z. Feng, X. Wang, Z. Wang. A high-resolution multi-wavelength simultaneous imaging system with solar adaptive optics. Astron. J., 154, 143(2017).

    [19] H. Gewiss, U. Timm, J. Kraitl, B. Brock, H. Ewald. Non-invasive multi wavelengths sensor system for measuring carboxy- and methemoglobin. Current Direct. Biomed. Eng., 3, 441(2017).

    [20] M. Li, Y. Liu, F. Zhang, X. Zhang, Z. Zhang, A. A. A. Omer, S. Zhao, W. Liu. Design of multi-passband polymer multilayer film and its application in photovoltaic agriculture. Chin. Opt. Lett., 19, 112201(2021).

    [21] H. Zhou, X. Jiang, J. Yang, Q. Zhou, T. Yu, M. Wang, T. Yu. Wavelength-selective optical waveguide isolator based on nonreciprocal ring-coupled Mach–Zehnder interferometer. J. Lightw. Technol., 26, 3166(2008).

    [22] T. Huang, Y. Sun, Z. Ouyang. Numerical analysis of dual-wavelength nonreciprocal phase shifter for magneto-optical isolators on silicon-on-insulator system. Opt. Eng., 53, 117112(2014).

    [23] Y. Hadad, B. Z. Steinberg. Magnetized spiral chains of plasmonic ellipsoids for one-way optical waveguides. Phys. Rev. Lett., 105, 233904(2010).

    [24] A. B. Khanikaev, S. H. Mousavi, G. Shvets, Y. S. Kivshar. One-way extraordinary optical transmission and nonreciprocal spoof plasmons. Phys. Rev. Lett., 105, 126804(2010).

    [25] L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, C. A. Ross. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photon., 5, 758(2006).

    [26] M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, J. E. Bowers. Silicon ring isolators with bonded nonreciprocal magneto-optic garnets. Opt. Express, 19, 11740(2011).

    [27] V. F. Nezhad, C. You, G. Veronis. Nanoplasmonic magneto-optical isolator. Chin. Opt. Lett., 19, 083602(2021).

    [28] Y. Shoji, M. Ito, Y. Shirato, T. Mizumoto. MZI optical isolator with Si-wire waveguides by surface-activated direct bonding. Opt. Express, 20, 18440(2012).

    [29] A. Alberucci, G. Assanto. All-optical isolation by directional coupling. Opt. Lett., 33, 1641(2008).

    [30] L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, M. Qi. An all-silicon passive optical diode. Science, 335, 447(2012).

    [31] B. Anand, R. Podila, K. Lingam, S. R. Krishnan, S. S. S. Sai, R. Philip, A. M. Rao. Optical diode action from axially asymmetric nonlinearity in an all-carbon solid state device. Nano Lett., 13, 5771(2013).

    [32] C. Wang, X.-L. Zhong, Z.-Y. Li. Linear and passive silicon optical isolator. Sci. Rep., 2, 674(2012).

    [33] Z. Yu, S. Fan. Complete optical isolation created by indirect interband photonic transitions. Nat. Photon., 3, 91(2009).

    [34] M. S. Kang, A. Butsch, P. S. J. Russell. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat. Photon., 5, 549(2011).

    [35] N. A. Estep, D. L. Sounas, J. Soric, A. Alù. Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops. Nat. Phys., 10, 923(2014).

    [36] D. L. Sounas, C. Caloz, A. Alù. iant nonreciprocity at the subwavelength scale using angular momentum-biased metamaterials. Nat. Commun., 4, 2407(2013).

    [37] D. L. Sounas, A. Alù. Angular-momentum-biased nanorings to realize magnetic-free integrated optical isolation. ACS Photon., 1, 198(2014).

    [38] Q. Wang, F. Xu, Z. Y. Yu, X.-S. Qian, X.-K. Hu, Y.-Q. Lu, H.-T. Wang. A bidirectional tunable optical diode based on periodically poled LiNbO. Opt. Express, 18, 7340(2010).

    [39] K. Fang, Z. Yu, S. Fan. Photonic Aharonov–Bohm effect based on dynamic modulation. Phys. Rev. Lett., 108, 153901(2012).

    [40] S. Longhi. Non-reciprocal transmission in photonic lattices based on unidirectional coherent perfect absorption. Opt. Lett., 40, 1278(2015).

    [41] L. Yuan, S. Xu, S. Fan. Achieving nonreciprocal unidirectional single-photon quantum transport using the photonic Aharonov–Bohm effect. Opt. Lett., 40, 5140(2015).

    [42] J. H. Wu, M. Artoni, G. C. La Rocca. Non-Hermitian degeneracies and unidirectional reflectionless atomic lattices. Phys. Rev. Lett., 113, 123004(2014).

    [43] B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, L. Yang. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys., 10, 394(2014).

    [44] H. Ramezani, T. Kottos, R. El-Ganainy, D. N. Christodoulides. Unidirectional nonlinear PT-symmetric optical structures. Phys. Rev., A82, 043803(2010).

    [45] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, D. Kip. Observation of parity–time symmetry in optics. Nat. Phys., 6, 192(2010).

    [46] D. W. Wang, H. T. Zhou, M. J. Guo, J.-X. Zhang, J. Evers, S.-Y. Zhu. Optical diode made from a moving photonic crystal. Phys. Rev. Lett., 110, 093901(2013).

    [47] S. A. R. Horsley, J. H. Wu, M. Artoni, G. C. La Rocca. Optical nonreciprocity of cold atom Bragg mirrors in motion. Phys. Rev. Lett., 110, 223602(2013).

    [48] J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, M. Xiao. Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment. Phys. Rev. A, 51, 576(1995).

    [49] G. W. Lin, Y. H. Qi, X. M. Lin, Y. P. Niu, S. Q. Gong. Strong photon blockade with intracavity electromagnetically induced transparency in a blockaded Rydberg ensemble. Phys. Rev. A, 92, 043842(2015).

    [50] H. Wu, J. Gea-Banacloche, M. Xiao. Observation of intracavity electromagnetically induced transparency and polariton resonances in a doppler-broadened medium. Phys. Rev. Lett., 100, 173602(2008).

    [51] S. Zhang, Y. Hu, G. Lin, Y. Niu, K. Xia, J. Gong, S. Gong. Thermal-motion-induced non-reciprocal quantum optical system. Nat. Photon., 12, 744(2018).

    [52] K. Xia, F. Nori, M. Xiao. Cavity-free optical isolators and circulators using a chiral cross-Kerr nonlinearity. Phys. Rev. Lett., 121, 203602(2018).

    [53] G. Lin, S. Zhang, Y. Hu, Y. Niu, J. Gong, S. Gong. Nonreciprocal amplification with four-level hot atoms. Phys. Rev. Lett., 123, 033902(2019).

    [54] Y. Hu, S. Zhang, Y. Qi, G. Lin, Y. Niu, S. Gong. Multiwavelength magnetic-free optical isolator by optical pumping in warm atoms. Phys. Rev. Appl., 12, 054004(2019).

    [55] S. Fan, Y. Qi, G. Lin, Y. Niu, S. Gonga. Broadband optical nonreciprocity in an N-type thermal atomic system. Opt. Commun., 462, 125343(2020).

    [56] L. Yang, Y. Zhang, X.-B. Yan, Y. Sheng, C.-L. Cui, J.-H. Wu. Dynamically induced two-color nonreciprocity in a tripod system of a moving atomic lattice. Phys. Rev. A, 92, 053859(2015).

    [57] Y. Choi, C. Hahn, J. W. Yoon, S. H. Song, P. Berini. Extremely broadband, on-chip optical nonreciprocity enabled by mimicking nonlinear anti-adiabatic quantum jumps near exceptional points. Nat. Commun., 8, 14154(2016).

    [58] A. Seif, M. Hafezi. Broadband optomechanical nonreciprocity. Nat. Photon., 12, 60(2018).

    Data from CrossRef

    [1] Mingzhi Han, Yuan He, Qianzhu Li, Xiaoyun Song, Yudou Wang, Aihong Yang, Qingtian Zeng, Yandong Peng. Efficient optical isolator via dual-Raman process with chiral nonlinearity. Results in Physics, 106288(2023).

    Shengfa Fan, Yihong Qi, Yueping Niu, Shangqing Gong. Nonreciprocal transmission of multi-band optical signals in thermal atomic systems[J]. Chinese Optics Letters, 2022, 20(1): 012701
    Download Citation