[1] Cheema S S, Shanker N, Wang L C et al. Ultrathin ferroic HfO2-ZrO2 superlattice gate stack for advanced transistors[J]. Nature, 604, 65-71(2022).
[2] Wang Z C, Yang Z M, Zhang X Y et al. Research progress of terahertz parametric sources[J]. Chinese Journal of Quantum Electronics, 40, 139-163(2023).
[3] Shi G Q, Xue D F. A multiscale perspective on quantum materials chemistry research[J]. Chemical Research, 33, 387-395(2022).
[4] Zhang G H, Zhang X N, Liu H Z et al. 3D-printed multi-channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries[J]. Advanced Energy Materials, 11, 2003927(2021).
[5] Han D, Ren X, Luo C et al. Experimental and computational investigations of novel 3D printed square tubular lattice metamaterials with negative Poisson's ratio[J]. Additive Manufacturing, 55, 102789(2022).
[6] Gu T T, Zhang D T, Yang Y et al. Dual-sites coordination engineering of single atom catalysts for full-temperature adaptive flexible ultralong-life solid-state Zn-Air batteries[J]. Advanced Functional Materials, 33, 2212299(2023).
[7] Biradha K, Santra R. Crystal engineering of topochemical solid state reactions[J]. Chemical Society Reviews, 42, 950-967(2013).
[8] Yang X R, Wang C W, Yan P F et al. Pushing lithium cobalt oxides to 4.7 V by lattice-matched interfacial engineering[J]. Advanced Energy Materials, 12, 2200197(2022).
[9] Tsai W F, Huang C Y, Chang T R et al. Gated silicene as a tunable source of nearly 100% spin-polarized electrons[J]. Nature Communications, 4, 1500(2013).
[10] Guo Y C, Yan B G, Deng F et al. Lattice expansion boosting photocatalytic degradation performance of CuCo2S4 with an inherent dipole moment[J]. Chinese Chemical Letters, 34, 107468(2023).
[11] He Z Y, Zhang J, Gong Z H et al. Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis[J]. Nature Communications, 13, 2191(2022).
[12] Long R, Li Y, Liu Y et al. Isolation of Cu atoms in Pd lattice: Forming highly selective sites for photocatalytic conversion of CO2 to CH4[J]. Journal of the American Chemical Society, 139, 4486-4492(2017).
[13] Zhang Q, Zhou C, Zhang D T et al. Data-driven discovery and intelligent design of artificial hybrid interphase layer for stabilizing lithium-metal anode[J]. Matter, 6, 2950-2962(2023).
[14] Chen G R, Sharpe A L, Fox E J et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice[J]. Nature, 579, 56-61(2020).
[15] Zhao L D, Hao S Q, Lo S H et al. High thermoelectric performance via hierarchical compositionally alloyed nanostructures[J]. Journal of the American Chemical Society, 135, 7364-7370(2013).
[16] Xie Q Y, Wu X S. The development of X-ray diffraction[J]. Physics, 41, 727-735(2012).
[17] Deng W B, Li T H, Li H et al. Morphology modulated defects engineering from MnO2 supported on carbon foam toward excellent electromagnetic wave absorption[J]. Carbon, 206, 192-200(2023).
[18] Zhang C Q, Fei B, Yang D W et al. Robust lithium⁃sulfur batteries enabled by highly conductive WSe2-based superlattices with tunable interlayer space[J]. Advanced Functional Materials, 32, 2201322(2022).
[19] Tang L N, Yang Y L, Guo H Q et al. High configuration entropy activated lattice oxygen for O2 formation on perovskite electrocatalyst[J]. Advanced Functional Materials, 32, 2112157(2022).
[20] Zhang J T, Mao X N, Wang S L et al. Superlattice in a Ru superstructure for enhancing hydrogen evolution[J]. Angewandte Chemie International Edition, 61, e202116867(2022).
[21] Du L J, Molas M R, Huang Z H et al. Moiré photonics and optoelectronics[J]. Science, 379, eadg0014(2023).
[22] Zhu L J, Ralph D C. Strong variation of spin-orbit torques with relative spin relaxation rates in ferrimagnets[J]. Nature Communications, 14, 1778(2023).
[23] Pan X Y, Yang M Q, Fu X Z et al. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications[J]. Nanoscale, 5, 3601-3614(2013).
[24] Chung I. Plainly fixing crystal lattices[J]. Science, 380, 800(2023).
[25] Liu L, He Y L, Yin S X et al. Bimodal ordered porous hierarchies from cooperative soft-hard template pairs[J]. Matter, 6, 3099-3111(2023).
[26] Miao Y X, Zhao Y X, Zhang S et al. Strain engineering: A boosting strategy for photocatalysis[J]. Advanced Materials, 34, 2200868(2022).
[27] Zhao L Y, Jiang Y J, Li C et al. Probing anisotropic deformation and near-infrared emission tuning in thin-layered InSe crystal under high pressure[J]. Nano Letters, 23, 3493-3500(2023).
[28] Zhang D T, Peng C, Xue D F. Design considerations for re-functionalizing electrocatalytic materials[J]. Science China Technological Sciences, 66, 3355-3368(2023).
[29] Micheli A, Brennen G K, Zoller P. A toolbox for lattice-spin models with polar molecules[J]. Nature Physics, 2, 341-347(2006).
[30] Macfarlane R J, Lee B, Jones M R et al. Nanoparticle superlattice engineering with DNA[J]. Science, 334, 204-208(2011).
[31] Hu W B, Liu Y, Withers R L et al. Electron-pinned defect-dipoles for high-performance colossal permittivity materials[J]. Nature Materials, 12, 821-826(2013).
[32] Cao Y, Fatemi V, Demir A et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices[J]. Nature, 556, 80-84(2018).
[33] Yao Y C, Hu S L, Chen W X et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis[J]. Nature Catalysis, 2, 304-313(2019).
[34] Liu D R, Wang D Y, Hong T et al. Lattice plainification advances highly effective SnSe crystalline thermoelectrics[J]. Science, 380, 841-846(2023).
[35] Ong S P, Mo Y F, Richards W D et al. Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors[J]. Energy & Environmental Science, 6, 148-156(2013).
[36] Wang Z F, Liu Z, Liu F. Quantum anomalous Hall effect in 2D organic topological insulators[J]. Physical Review Letters, 110, 196801(2013).
[37] Liu Z, Ma L L, Shi G et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes[J]. Nature Nanotechnology, 8, 119-124(2013).
[38] Zhao W J, Ghorannevis Z, Amara K K et al. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2[J]. Nanoscale, 5, 9677-9683(2013).
[39] Wang Z F, Liu Z, Liu F. Organic topological insulators in organometallic lattices[J]. Nature Communications, 4, 1471(2013).
[40] Liu F, Chen K F, Xue D F. How to fast grow large-size crystals?[J]. The Innovation, 4, 100458(2023).
[41] Lohse M, Schweizer C, Zilberberg O et al. A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice[J]. Nature Physics, 12, 350-354(2016).
[42] Cao Y, Luo J Y, Fatemi V et al. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene[J]. Physical Review Letters, 117, 116804(2016).
[43] Liu W Y, Tagawa M, Xin H L et al. Diamond family of nanoparticle superlattices[J]. Science, 351, 582-586(2016).
[44] Yadav A K, Nelson C T, Hsu S L et al. Observation of polar vortices in oxide superlattices[J]. Nature, 530, 198-201(2016).
[45] Cao Y, Fatemi V, Fang S A et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 556, 43-50(2018).
[46] Chen S Y, Walsh A, Gong X G et al. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers[J]. Advanced Materials, 25, 1522-1539(2013).
[47] Hu L P, Zhu T J, Liu X H et al. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials[J]. Advanced Functional Materials, 24, 5211-5218(2014).
[48] Li Y, Yin K, Wang L L et al. Engineering MoS2 nanomesh with holes and lattice defects for highly active hydrogen evolution reaction[J]. Applied Catalysis B: Environmental, 239, 537-544(2018).
[49] Mocherla P S V, Karthik C, Ubic R et al. Tunable bandgap in BiFeO3 nanoparticles: The role of microstrain and oxygen defects[J]. Applied Physics Letters, 103, 022910(2013).
[50] Dai Z, Qin F, Zhao H P et al. Crystal defect engineering of aurivillius Bi2MoO6 by Ce doping for increased reactive species production in photocatalysis[J]. ACS Catalysis, 6, 3180-3192(2016).
[51] Maughan A E, Ganose A M, Bordelon M M et al. Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6 and Cs2TeI6[J]. Journal of the American Chemical Society, 138, 8453-8464(2016).
[52] Liu L, Yu P Y, Chen X B et al. Hydrogenation and disorder in engineered black TiO2[J]. Physical Review Letters, 111, 065505(2013).
[53] Escudero-Escribano M, Malacrida P, Hansen M H et al. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction[J]. Science, 352, 73-76(2016).
[54] Aschauer U, Pfenninger R, Selbach S M et al. Strain-controlled oxygen vacancy formation and ordering in CaMnO3[J]. Physical Review B, 88, 054111(2013).
[55] Tan S Y, Zhang Y, Xia M et al. Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films[J]. Nature Materials, 12, 634-640(2013).
[56] Juliá F. Ligand-to-metal charge transfer (LMCT) photochemistry at 3d-metal complexes: An emerging tool for sustainable organic synthesis[J]. ChemCatChem, 14, e202200916(2022).
[57] Steube J, Kruse A, Bokareva O S et al. Janus-type emission from a cyclometalated iron (iii) complex[J]. Nature Chemistry, 15, 468-474(2023).
[58] Gao C, Wang J, Xu H X et al. Coordination chemistry in the design of heterogeneous photocatalysts[J]. Chemical Society Reviews, 46, 2799-2823(2017).