• Infrared and Laser Engineering
  • Vol. 49, Issue 2, 205008 (2020)
Zhao Hongchang1、*, Zhan Xiang1, Jiang Qiyuan1, Wang Zhiguo1、2, and Luo Hui1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla202049.0205008 Cite this Article
    Zhao Hongchang, Zhan Xiang, Jiang Qiyuan, Wang Zhiguo, Luo Hui. Influence of the filter in feedback loop on the operation of the nuclear magnetic resonance gyroscope[J]. Infrared and Laser Engineering, 2020, 49(2): 205008 Copy Citation Text show less
    References

    [1] Eklund E J. Micro gyroscope based on spin-polarized Nuclei[D]. California: University of California at Irvine, 2008.

    [2] Larsen M, Bulatowicz M. Nuclear magnetic resonance gyroscope[C]// IEEE Frequency Control Symposium Proceeding, 2012: 1-5.

    [3] Donley E. Nuclear magnetic resonance gyroscopes[C]//Proceedings of the Sensors, 2010 IEEE, 2010: 17-22.

    [4] Fang Jiancheng, Qin Jie. Advances in atomic gyroscopes: A view from inertial navigation applications[J]. Sensors, 2012, 12(5): 6331-6346.

    [5] Qin Jie, Wang Shilin, Gao Puze, et al. Advances in nuclear magnetic resonance gyroscope[J]. Navigation Positioning & Timing, 2014, 1(2): 64-69. (in Chinese)

    [6] Wan Shuang′ai, Sun Xiaoguang, Zheng Xin, et al. Prospective development of nuclear magnetic resonance gyroscope[J]. Navigation Positioning & Timing, 2017, 4(1): 7-13. (in Chinese)

    [7] Zhou Binquan, Lei Guanqun, Chen Linlin, et al. Noise suppression for the detection laser of a nuclear magnetic resonance gyroscope based on a liquid crystal variable retarder[J]. Chinese Optics Letters, 2017, 15(8): 99-103.

    [8] Liu Yuanxing, Wang Wei, Wang Xuefeng. Key technology and development tendency of micro nuclear magnetic resonance gyroscope[J]. Navigation and Control, 2014, 13(4): 1-6. (in Chinese)

    [9] Li Pan, Liu Yuanzheng, Wang Jiliang. Current status and development of nuclear magnetic resonance microgyroscopes[J]. Micronanoelectronic Technology, 2012, 49(12): 769-774, 785. (in Chinese)

    [10] Yi Xin, Wang Zhiguo, Xia Tao, et al. Research on temperature field in the vapor cell of nuclear magnetic resonance gyroscope[J]. Chinese Optics, 2016, 9(6): 671-677. (in Chinese)

    [11] Wang Zhiguo, Peng Xiang, Luo Hui, et al. Comparison of operation modes for spin-exchange optically-pumped spin oscillators[J]. Journal of Magnetic Resonance, 2017, 278: 134-140.

    [12] Walker T G, Larsen M S. Spin-exchange pumped NMR gyros[J]. Advances in Atomic, Molecular, and Optical Physics, 2016, 65: 373-401.

    [13] 129Xe nuclear spin oscillator with optical spin detection[J]. Physics Letters A, 2012, 376: 1924-1929.

         Yoshimi A, Inoue T, Furukawa T, et al. Low-frequency

    [14] Sargent M, Scully M O, Lamb W E. Laser Physics[M]. New York: Addison-Wesley Publishing Company, 1974.

    [15] Oppenheim V A, Willsky S A. Signals and Systems[M]. New Jersey: Prentice-Hall, 2017.

    [16] Xu Guowei, Zhang Yi, Jiang Qiyuan, et al. Temperature control of vapor cell based on the light absorption of nuclear magnetic resonance gyroscope[J]. Infrared and Laser Engineering, 2019, 48(S1): S106003. (in Chinese)

    [17] Bevan D, Bulatowicz M, Clark P, et al. Nuclear magnetic resonance gyroscope: developing a primary rotation sensor[C]//2018 IEEE International Symposium on Inertial Sensors and Systems, 2018.

    Zhao Hongchang, Zhan Xiang, Jiang Qiyuan, Wang Zhiguo, Luo Hui. Influence of the filter in feedback loop on the operation of the nuclear magnetic resonance gyroscope[J]. Infrared and Laser Engineering, 2020, 49(2): 205008
    Download Citation