• Photonics Research
  • Vol. 12, Issue 3, 587 (2024)
Zhipeng Yu1、2、†, Tianting Zhong1、2、†, Huanhao Li1、2, Haoran Li1、2, Chi Man Woo1、2, Shengfu Cheng1、2, Shuming Jiao3, Honglin Liu2、4, Chao Lu5、6、7、*, and Puxiang Lai1、2、6、8、*
Author Affiliations
  • 1Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
  • 2Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
  • 3Peng Cheng Laboratory, Shenzhen 518055, China
  • 4Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 5Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
  • 6Photonics Research Institute, The Hong Kong Polytechnic University, Hong Kong SAR, China
  • 7e-mail: chao.lu@polyu.edu.hk
  • 8e-mail: puxiang.lai@polyu.edu.hk
  • show less
    DOI: 10.1364/PRJ.499523 Cite this Article Set citation alerts
    Zhipeng Yu, Tianting Zhong, Huanhao Li, Haoran Li, Chi Man Woo, Shengfu Cheng, Shuming Jiao, Honglin Liu, Chao Lu, Puxiang Lai. Long distance all-optical logic operations through a single multimode fiber empowered by wavefront shaping[J]. Photonics Research, 2024, 12(3): 587 Copy Citation Text show less
    References

    [1] K. Zhong, X. Zhou, T. Gui. Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems. Opt. Express, 23, 1176-1189(2015).

    [2] T. G. Giallorenzi, J. A. Bucaro, A. Dandridge. Optical fiber sensor technology. IEEE Trans. Microwave Theory Tech., 30, 472-511(1982).

    [3] B. A. Flusberg, E. D. Cocker, W. Piyawattanametha. Fiber-optic fluorescence imaging. Nat. Methods, 2, 941-950(2005).

    [4] N. Bai, E. Ip, Y.-K. Huang. Mode-division multiplexed transmission with inline few-mode fiber amplifier. Opt. Express, 20, 2668-2680(2012).

    [5] M. W. Matthès, Y. Bromberg, J. de Rosny. Learning and avoiding disorder in multimode fibers. Phys. Rev. X, 11, 021060(2021).

    [6] D. C. Gloge, T. Li. Multimode-fiber technology for digital transmission. Proc. IEEE, 68, 1269-1275(1980).

    [7] I. M. Vellekoop, A. Mosk. Focusing coherent light through opaque strongly scattering media. Opt. Lett., 32, 2309-2311(2007).

    [8] Z. Yu, H. Li, T. Zhong. Wavefront shaping: a versatile tool to conquer multiple scattering in multidisciplinary fields. Innovation, 3, 100292(2022).

    [9] S. Cheng, T. Zhong, C. M. Woo. Alternating projection-based phase optimization for arbitrary glare suppression through multimode fiber. Opt. Laser Eng., 161, 107368(2023).

    [10] H. Li, Z. Yu, Q. Zhao. Learning-based super-resolution interpolation for sub-Nyquist sampled laser speckles. Photon. Res., 11, 631-642(2023).

    [11] M. Plöschner, T. Tyc, T. Čižmár. Seeing through chaos in multimode fibres. Nat. Photonics, 9, 529-535(2015).

    [12] Y. Choi, C. Yoon, M. Kim. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett., 109, 203901(2012).

    [13] A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey. Real-time resilient focusing through a bending multimode fiber. Opt. Express, 21, 12881-12887(2013).

    [14] S. Cheng, T. Zhong, C. M. Woo. Long-distance pattern projection through an unfixed multimode fiber with natural evolution strategy-based wavefront shaping. Opt. Express, 30, 32565-32576(2022).

    [15] S. A. Vasquez-Lopez, R. Turcotte, V. Koren. Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber. Light Sci. Appl., 7, 110(2018).

    [16] I. T. Leite, S. Turtaev, X. Jiang. Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre. Nat. Photonics, 12, 33-39(2017).

    [17] T. Zhong, Z. Qiu, Y. Wu. Optically selective neuron stimulation with a wavefront shaping‐empowered multimode fiber. Adv. Photon. Res., 3, 2100231(2022).

    [18] B. Redding, M. Alam, M. Seifert. High-resolution and broadband all-fiber spectrometers. Optica, 1, 175-180(2014).

    [19] O. Tzang, A. M. Caravaca-Aguirre, K. Wagner. Adaptive wavefront shaping for controlling nonlinear multimode interactions in optical fibres. Nat. Photonics, 12, 368-374(2018).

    [20] S. R. Huisman, T. J. Huisman, T. A. W. Wolterink. Programmable multiport optical circuits in opaque scattering materials. Opt. Express, 23, 3102-3116(2015).

    [21] S. Leedumrongwatthanakun, L. Innocenti, H. Defienne. Programmable linear quantum networks with a multimode fibre. Nat. Photonics, 14, 139-142(2020).

    [22] M. W. Matthès, P. del Hougne, J. de Rosny. Optical complex media as universal reconfigurable linear operators. Optica, 6, 465-472(2019).

    [23] M. Plöschner, B. Straka, K. Dholakia. GPU accelerated toolbox for real-time beam-shaping in multimode fibres. Opt. Express, 22, 2933-2947(2014).

    [24] W.-H. Lee. Binary computer-generated holograms. Appl. Opt., 18, 3661-3669(1979).

    [25] H. Yu, K. Lee, Y. Park. Ultrahigh enhancement of light focusing through disordered media controlled by mega-pixel modes. Opt. Express, 25, 8036-8047(2017).

    [26] H. Wei, Z. Li, X. Tian. Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks. Nano Lett., 11, 471-475(2011).

    [27] Q. Xu, M. Lipson. All-optical logic based on silicon micro-ring resonators. Opt. Express, 15, 924-929(2007).

    [28] P. Zhou, L. Zhang, Y. Tian. 10 GHz electro-optical OR/NOR directed logic device based on silicon micro-ring resonators. Opt. Lett., 39, 1937-1940(2014).

    [29] Y. Tian, Y. Zhao, W. Chen. Electro-optic directed XOR logic circuits based on parallel-cascaded micro-ring resonators. Opt. Express, 23, 26342-26355(2015).

    [30] C. Yao, A. Kotb, B. Wang. All-optical logic gates using dielectric-loaded waveguides with quasi-rhombus metasurfaces. Opt. Lett., 45, 3769-3772(2020).

    [31] Y. Sang, X. Wu, S. S. Raja. Broadband multifunctional plasmonic logic gates. Adv. Opt. Mater., 6, 1701368(2018).

    [32] T. Sadeghi, S. Golmohammadi, A. Farmani. Improving the performance of nanostructure multifunctional graphene plasmonic logic gates utilizing coupled-mode theory. Appl. Phys. B, 125, 189(2019).

    [33] C. Qian, X. Lin, X. Lin. Performing optical logic operations by a diffractive neural network. Light Sci. Appl., 9, 59(2020).

    [34] M. Manjappa, P. Pitchappa, N. Singh. Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies. Nat. Commun., 9, 4056(2018).

    [35] Z. Wen, Z. Dong, C. Pang. Single multimode fiber for in vivo light-field encoded nano-imaging. arXiv(2022).

    [36] S. Resisi, Y. Viernik, S. M. Popoff. Wavefront shaping in multimode fibers by transmission matrix engineering. APL Photon., 5, 036103(2020).

    [37] T. H. Chan, L. Yu, H.-Y. Tam. Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: background and experimental observation. Eng. Struct., 28, 648-659(2006).

    [38] X. Tang, Y. Zhai, L. Sun. Implementation of a reconfigurable optical logic gate using a single I/Q modulator with direct detection. IEEE Photon. J., 8, 7802808(2016).

    [39] S. Palnitkar. Verilog HDL: A Guide to Digital Design and Synthesis, 1(2003).

    [40] H. G. Weber, R. Ludwig, S. Ferber. Ultrahigh-speed OTDM-transmission technology. J. Lightwave Technol., 24, 4616-4627(2007).

    [41] S. J. Park, C. H. Lee, K. T. Jeong. Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network. J. Lightwave Technol., 22, 2582-2591(2004).

    [42] A. Porat, E. R. Andresen, H. Rigneault. Widefield lensless imaging through a fiber bundle via speckle correlations. Opt. Express, 24, 16835-16855(2016).

    Zhipeng Yu, Tianting Zhong, Huanhao Li, Haoran Li, Chi Man Woo, Shengfu Cheng, Shuming Jiao, Honglin Liu, Chao Lu, Puxiang Lai. Long distance all-optical logic operations through a single multimode fiber empowered by wavefront shaping[J]. Photonics Research, 2024, 12(3): 587
    Download Citation