• Journal of Semiconductors
  • Vol. 40, Issue 3, 032101 (2019)
M. Benaida1, K. E. Aiadi1, S. Mahtout2, S. Djaadi1, W. Rammal3, and M. Harb4
Author Affiliations
  • 1Laboratoire de Développement des Energies Nouvelles et Renouvelables en Zones Aride, Université de Ouargla, 30000 Ouargla, Algeria
  • 2Laboratoire de Physique Théorique, Faculté des Sciences Exactes, Université de Bejaia, 06000 Begaia, Algeria
  • 3Faculty of Sciences, Lebanese University, Lebanon
  • 4KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
  • show less
    DOI: 10.1088/1674-4926/40/3/032101 Cite this Article
    M. Benaida, K. E. Aiadi, S. Mahtout, S. Djaadi, W. Rammal, M. Harb. Growth behavior and electronic properties of Gen + 1 and AsGen (n = 1–20) clusters: a DFT study[J]. Journal of Semiconductors, 2019, 40(3): 032101 Copy Citation Text show less
    References

    [1] J Wang, J G Han. The growth behaviors of the Zn-doped different sized germanium clusters: a density functional investigation. Chem Phys, 342, 253(2007).

    [2] S Mahtout, Y Tariket. Electronic and magnetic properties of CrGen (15 ≤ n ≤ 29) clusters: a DFT study. Chem Phys, 472, 270(2016).

    [3] R W Schmude, K A Gingerich. Thermodynamic study of small silicon carbide clusters with a mass spectrometer. J Phys Chem A, 101, 2610(1997).

    [4] P N Samanta, K K Das. Electronic structure, bonding, and properties of SnmGen (m + n ≤ 5) clusters: a DFT study. Comput Theor Chem, 980, 123(2012).

    [5] J Jr Kingcade, K Gingerich. Knudsen effusion mass spectrometric investigation of palladium-germanium clusters. Inorg Chem, 28, 89(1989).

    [6] P S Yadav, R K Yadav. Ab initio study of the physical properties of binary SimCn (m + n ≤ 5) nanoclusters. J Phys Cond Matter, 18, 7085(2006).

    [7] D Bandyopadhyay, M Kumar. The electronic structures and properties of transition metal-doped silicon nanoclusters: a density functional investigation. Chem Phys, 353, 170(2008).

    [8] J G Han, F Hagelberg. Recent progress in the computational study of silicon and germanium clusters with transition metal impurities. J Comput Theor Nanosci, 6, 257(2009).

    [9] S Bals, S Van Aert, C P Romero et al. Atomic scale dynamics of ultrasmall germanium clusters. Nat Commun, 3, 897(2012).

    [10] C Siouani, S Mahtout, S Safer et al. Structure, stability, and electronic and magnetic properties of VGen (n = 1–19) clusters. J Phys Chem A, 121, 3540(2017).

    [11] M Brack. The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches. Rev Mod Phys, 65, 677(1993).

    [12] J G Han, P F Zhang, Q X Lic et al. A theoretical investigation of GenSn (n = 1–4) clusters. J Mol Struct, 624, 257(2003).

    [13] A K Singh, V Kumar. Thorium encapsulated caged clusters of germanium: The Gen, n = 16, 18, and 20. J Phys Chem B, 109, 15187(2005).

    [14] J Wang, J G Han. A computational investigation of copper-doped germanium and germanium clusters by the density-functional theory. J Chem Phys, 123, 244303(2005).

    [15] W J Zhao, ng Wa, X Y. Geometries, stabilities, and magnetic properties of MnGen (n = 2–16) clusters: density-functional theory investigations. J Mol Struct, 901, 18(2009).

    [16] S Jaiswal, V Kumar. Growth behavior and electronic structure of neutral and anion ZrGen (n = 1–21) clusters. Comput Theor Chem, 1075, 87(2016).

    [17] S Mahtout, C Siouani, F Rabilloud. Growth behavior and electronic structure of noble metal-doped germanium clusters. J Phys Chem A, 122, 662(2018).

    [18] S Djaadi, K E Aiadi, S Mahtout. First principles study of structural, electronic and magnetic properties of SnGen (0, ± 1)(n = 1–17) clusters. J Semicond, 39, 042001(2018).

    [19] P Ordejón, E Artacho, J M Soler. Self-consistent order-N density-functional calculations for very large systems. Phys Rev B, 53, R10441(1996).

    [20] J M Soler, E Artacho, J D Gale et al. The siesta method for ab initio order-n materials simulation. J Phys Cond Matter, 14, 2745(2002).

    [21] N Troullier, J L Martins. Efficient pseudopotentials for plane-wave calculations. Phys Rev B, 43, 1993(1991).

    [22] J P Perdew, A Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B, 23, 5048(1981).

    [23] J P Perdew, K Burke, M Ernzerhof. Generalized gradient approximation made simple. Phys Rev Lett, 77, 3865(1996).

    [24] D Bandyopadhyay, P Sen. Density functional investigation of structure and stability of Gen and GenNi (n = 1–20) clusters: validity of the electron counting Rule. J Phys Chem A, 114, 1835(2010).

    [25] S Shi, Y Liu, C Zhang et al. A computational investigation of aluminum-doped germanium clusters by density functional theory study. Comput Theor Chem, 1054, 8(2015).

    [26] N Kapila, I Garg, V K Jindal et al. First principle investigation into structural growth and magnetic properties in GenCr clusters for n = 1–13. J Mag Mag Mater, 324, 2885(2012).

    [27] J Wang, G Wang, J Zhao. Structure and electronic properties of Gen (n = 2–25) clusters from density-functional theory. Phys Rev B, 64, 205411(2001).

    [28] M Yoshida, J I Aihara. Validity of the weighted HOMO–LUMO energy separation as an index of kinetic stability for fullerenes with up to 120 carbon atoms. Phys Chem Chem Phys, 1, 227(1999).

    [29] R G Parr, R G Pearson. Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc, 105, 7512(1983).

    [30] E Sosa-Hernández, P Alvarado-Leyva. Magnetic properties of stable structures of small binary FenGem (n + m ≤ 4) clusters. Physica E, 42, 17(2009).

    [31] X Li, K Su, X Yang et al. Size-selective effects in the geometry and electronic property of bimetallic Au-Ge nanoclusters. Comput Theor Chem, 1010, 32(2013).

    [32] J E Kingcade, H M Nagarathna-Naik, I Shim et al. Electronic structure and bonding of the dimeric germanium molecule from all-electron ab initio calculations and equilibrium measurements. J Phys Chem, 90, 2830(1986).

    [33] S Nagendran, S S Sen, H W Roesky et al. RGe(I)Ge(I)R Compound (R = PhC(NtBu)2) with a Ge−Ge single bond and a comparison with the gauche conformation of hydrazine. Organometallics, 27, 5459(2008).

    [34] G V Gadiyak, Y. N Morokov, A G Mukhachev et al. Electron density functional method for molecular system calculations. J Struct Chem, 22, 670(1982).

    [35] J Wang, J G Han. Geometries, stabilities, and vibrational properties of bimetallic Mo2-doped Gen (n = 9–15) clusters: a density functional investigation. J Phys Chem A, 112, 3224(2008).

    [36] A Kant, B H Strauss. Atomization energies of the polymers of germanium, Ge2 to Ge7. J Chem Phys, 45, 822(1966).

    [37] I S Vasiliev, S Öğüt, J R Chelikowsky. Ab initio calculations for the polarizabilities of small semiconductor clusters. Phys Rev Lett, 78, 4805(1997).

    [38] G R Burton, C Xu, C C Arnold et al. Photoelectron spectroscopy and zero electron kinetic energy spectroscopy of germanium cluster anions. J Chem Phys, 104, 2757(1996).

    [39] S Safer, S Mahtout, K Rezouali et al. Properties of neutral and charged cobalt-doped arsenic CoAsn (0 ± 1) (n = 1–15) clusters by density functional theory. Comput Theor Chem, 1090, 23(2016).

    [40] L Guo. The structure and energetic of AlAsn (n = 1–15) clusters: a first-principles study. J Alloys Compounds, 498, 121(2010).

    [41]

    M. Benaida, K. E. Aiadi, S. Mahtout, S. Djaadi, W. Rammal, M. Harb. Growth behavior and electronic properties of Gen + 1 and AsGen (n = 1–20) clusters: a DFT study[J]. Journal of Semiconductors, 2019, 40(3): 032101
    Download Citation