• Laser & Optoelectronics Progress
  • Vol. 58, Issue 1, 100003 (2021)
Wang Zongyuan, Hu Bin*, and Wu Xudong
Author Affiliations
  • Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • show less
    DOI: 10.3788/LOP202158.0100003 Cite this Article Set citation alerts
    Wang Zongyuan, Hu Bin, Wu Xudong. Research Progress of Laser-Induced Graphene Technology[J]. Laser & Optoelectronics Progress, 2021, 58(1): 100003 Copy Citation Text show less
    References

    [1] Stoller M D, Park S, Zhu Y W et al. Graphene-based ultracapacitors[J]. Nano Letters, 8, 3498-3502(2008).

    [2] Mayorov A S, Gorbachev R V, Morozov S V et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature[J]. Nano Letters, 11, 2396-2399(2011). http://www.ncbi.nlm.nih.gov/pubmed/21574627

    [3] Balandin A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials, 10, 569-581(2011).

    [4] Nair R R, Blake P, Grigorenko A N et al. Fine structure constant defines visual transparency of graphene[J]. Science, 320, 1308(2008).

    [5] Olenych I B, Aksimentyeva O I, Monastyrskii L S et al. Effect of graphene oxide on the properties of porous silicon[J]. Nanoscale Research Letter, 11, 43(2016).

    [6] Zhou Y X, Huang Y Y, Jin Y P et al. Terahertz properties of graphene and graphene-based terahertz devices[J]. Chinese Journal of Lasers, 46, 0614011(2019).

    [7] Wu J J, Zhao H X, Gao J X. Enhancing light absorption of graphene using magneto-optical photonic crystals[J]. Chinese Journal of Lasers, 47, 0403003(2020).

    [8] Aradilla D, Delaunay M, Sadki S et al. Vertically aligned graphene nanosheets on silicon using an ionic liquid electrolyte: towards high performance on-chip micro-supercapacitors[J]. Journal of Materials Chemistry A, 3, 19254-19262(2015). http://www.researchgate.net/publication/283110062_Vertically_aligned_graphene_nanosheets_on_silicon_using_an_ionic_liquid_electrolyte_Towards_high_performance_on-chip_micro-supercapacitors

    [9] Wu Z S, Parvez K, Feng X et al. Graphene-based in-plane micro-supercapacitors with high power and energy densities[J]. Nature Communications, 4, 2487(2013). http://europepmc.org/abstract/med/24042088

    [10] Niu Z Q, Zhang L, Liu L L et al. All-solid-state flexible ultrathin micro-supercapacitors based on graphene[J]. Advanced Materials, 25, 4035-4042(2013).

    [11] Beidaghi M, Wang C L. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance[J]. Advanced Functional Materials, 22, 4501-4510(2012).

    [12] Cao L J, Yang S B, Gao W et al. Direct laser-patterned micro-supercapacitors from paintable MoS2 films[J]. Small, 9, 2905-2910(2013).

    [13] Yuan Y H, Chen X Y, Hu F R et al. Terahertz amplitude modulator based on metasurface/ion-gel/graphene hybrid structure[J]. Chinese Journal of Lasers, 46, 0614016(2019).

    [14] Liu H, Wang Y, Gou X et al. Three-dimensional graphene/polyaniline composite material for high-performance supercapacitor applications[J]. Materials Science and Engineering B, 178, 293-298(2013).

    [15] Kundu D, Krumeich F, Nesper R. Investigation of nano-fibrous selenium and its polypyrrole and graphene composite as cathode material for rechargeable Li-batteries[J]. Journal of Power Sources, 236, 112-117(2013). http://www.sciencedirect.com/science/article/pii/S0378775313003248

    [16] Akhavan O, Ghaderi E, Shirazian S A. Near infrared laser stimulation of human neural stem cells into neurons on graphene nanomesh semiconductors[J]. Colloids And Surfaces B, 126, 313-321(2015). http://europepmc.org/abstract/med/25578421

    [17] Park D W, Schendel A A, Mikael S et al. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications[J]. Nature Communications, 5, 5258(2014).

    [18] Ji M Y, Jiang N, Chang J et al. Near-infrared light-driven, highly efficient bilayer actuators based on polydopamine-modified reduced graphene oxide[J]. Advanced Functional Materials, 24, 5412-5419(2014).

    [19] Wei D C, Liu Y Q, Wang Y et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties[J]. Nano Letters, 9, 1752-1758(2009).

    [20] Emtsev K V, Bostwick A, Horn K et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide[J]. Nature Materials, 8, 203-207(2009).

    [21] Reina A, Jia X T, Ho J et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Letters, 9, 30-35(2009).

    [22] Suk J W, Kitt A, Magnuson C W et al. Transfer of CVD-grown monolayer graphene onto arbitrary substrates[J]. ACS Nano, 5, 6916-6924(2011).

    [23] Choi W, Lahiri I, Seelaboyina R et al. Synthesis of graphene and its applications: a review[J]. Critical Reviews in Solid State and Materials Sciences, 35, 52-71(2010).

    [24] Stankovich S, Dikin D A, Piner R D et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 45, 1558-1565(2007).

    [25] Stankovich S, Dikin D A. Dommett G H B, et al. Graphene-based composite materials[J]. Nature, 442, 282-286(2006).

    [26] Chen Z, Ren W, Gao L et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 10, 424-428(2011).

    [27] Tung V C, Allen M J, Yang Y et al. High-throughput solution processing of large-scale graphene[J]. Nature Nanotechnology, 4, 25-29(2009). http://www.nature.com/articles/nnano.2008.329

    [28] Bae S, Kim H, Lee Y et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnology, 5, 574-578(2010).

    [29] Wang S, Ang P K, Wang Z Q et al. High mobility, printable, and solution-processed graphene electronics[J]. Nano Letters, 10, 92-98(2010). http://doi.med.wanfangdata.com.cn/10.1021/nl9028736

    [30] Jakus A E, Secor E B, Rutz A L et al. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications[J]. ACS Nano, 9, 4636-4648(2015).

    [31] Cong H P, Ren X C, Wang P et al. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process[J]. ACS Nano, 6, 2693-2703(2012). http://pubs.acs.org/doi/abs/10.1021/nn300082k

    [32] Senat M V, Deprest J, Boulvain M et al. Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome[J]. New England Journal of Medicine, 351, 136-144(2004).

    [33] Hogan N J, Urban A S, Ayala-Orozco C et al. Nanoparticles heat through light localization[J]. Nano Letters, 14, 4640-4645(2014). http://www.ncbi.nlm.nih.gov/pubmed/24960442

    [34] Frame J W. Removal of oral soft tissue pathology with the CO2 laser[J]. Journal of Oral and Maxillofacial Surgery, 43, 850-855(1985).

    [35] Stensitzki T, Yang Y, Kozich V et al. Acceleration of a ground-state reaction by selective femtosecond-infrared-laser-pulse excitation[J]. Nature Chemistry, 10, 126-131(2018).

    [36] Lin J, Peng Z, Liu Y et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications, 5, 5714(2014). http://pubmedcentralcanada.ca/pmcc/articles/PMC4264682/

    [37] Geim A K. Graphene: status and prospects[J]. Science, 324, 1530-1534(2009).

    [38] Chen G Q, Liu Y X, Liu F et al. Fabrication of three-dimensional graphene foam with high electrical conductivity and large adsorption capability[J]. Applied Surface Science, 311, 808-815(2014). http://www.sciencedirect.com/science/article/pii/S0169433214012124

    [39] Bolotin K I, Sikes K J, Jiang Z et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 146, 351-355(2008).

    [40] Xia J L, Chen F, Li J H et al. Measurement of the quantum capacitance of graphene[J]. Nature Nanotechnology, 4, 505-509(2009).

    [41] Wu Z S, Ren W, Gao L et al. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation[J]. ACS Nano, 3, 411-417(2009). http://www.ncbi.nlm.nih.gov/pubmed/19236079

    [42] Lee C, Wei X D, Kysar J W et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 321, 385-388(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000018000004000102000001&idtype=cvips&gifs=Yes

    [43] Chen K, Shi L, Zhang Y et al. Scalable chemical-vapour-deposition growth of three-dimensional graphene materials towards energy-related applications[J]. Chemical Society Reviews, 47, 3018-3036(2018). http://www.ncbi.nlm.nih.gov/pubmed/29484331

    [44] Sha J, Gao C, Lee S K et al. Preparation of three-dimensional graphene foams using powder metallurgy templates[J]. ACS Nano, 10, 1411-1416(2016). http://dx.doi.org/10.1021/acsnano.5b06857

    [45] Yan Z, Ma L L, Zhu Y et al. Three-dimensional metal-graphene-nanotube multifunctional hybrid materials[J]. ACS Nano, 7, 58-64(2013).

    [46] Wu Z S, Winter A, Chen L et al. Three-dimensional nitrogen and boron Co-doped graphene for high-performance all-solid-state supercapacitors[J]. Advanced Materials, 24, 5130-5135(2012).

    [47] Yang X, Cheng C, Wang Y et al. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage[J]. Science, 341, 534-537(2013).

    [48] Chabot V, Higgins D, Yu A P et al. A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment[J]. Energy & Environmental Science, 7, 1564-1596(2014). http://pubs.rsc.org/en/content/articlelanding/ee/2014/c3ee43385d

    [49] Wang Z Y, Wang G C, Liu W G et al. Patterned laser-induced graphene for terahertz wave modulation[J]. Journal of the Optical Society of America B, 37, 546-551(2020).

    [50] Duy L X, Peng Z W, Li Y L et al. Laser-induced graphene fibers[J]. Carbon, 126, 472-479(2018).

    [51] Ferrari A C, Meyer J C, Scardaci V et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 97, 187401(2006).

    [52] Sun Z Z. Raji A R O, Zhu Y, et al. Large-area bernal-stacked bi-, tri-, and tetralayer graphene[J]. ACS Nano, 6, 9790-9796(2012).

    [53] Dimiev A M, Ceriotti G, Behabtu N et al. Direct real-time monitoring of stage transitions in graphite intercalation compounds[J]. ACS Nano, 7, 2773-2780(2013). http://www.ncbi.nlm.nih.gov/pubmed/23438444

    [54] Chyan Y, Ye R, Li Y et al. Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food[J]. ACS Nano, 12, 2176-2183(2018). http://europepmc.org/abstract/MED/29436816

    [55] Peng Z W, Ye R Q, Mann J A et al. Flexible boron-doped laser-induced graphene microsupercapacitors[J]. ACS Nano, 9, 5868-5875(2015). http://pubs.acs.org/doi/abs/10.1021/acsnano.5b00436

    [56] Luong D X, Subramanian A K. Silva G A L, et al. Laminated object manufacturing of 3D-printed laser-induced graphene foams[J]. Advanced Materials, 30, 1707416(2018).

    [57] Wu Z S, Parvez K, Winter A et al. Layer-by-layer assembled heteroatom-doped graphene films with ultrahigh volumetric capacitance and rate capability for micro-supercapacitors[J]. Advanced Materials, 26, 4552-4558(2014).

    [58] Panchakarla L S, Subrahmanyam K S, Saha S K et al. Synthesis, structure, and properties of boron- and nitrogen-doped graphene[J]. Advanced Materials, 21, 4726-4730(2009). http://d.wanfangdata.com.cn/periodical/Arxiv000000058683

    [59] Hsu W K, Zhu Y Q, Yao N et al. Titanium-doped molybdenum disulfide nanostructures[J]. Advanced Functional Materials, 11, 69-74(2001).

    [60] Masetti G, Severi M, Solmi S. Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon[J]. IEEE Transactions on Electron Devices, 30, 764-769(1983).

    [61] Bustarret E, Marcenat C, Achatz P et al. Superconductivity in doped cubic silicon[J]. Nature, 444, 465-468(2006).

    [62] Lamberti A, Perrucci F, Caprioli M et al. New insights on laser-induced graphene electrodes for flexible supercapacitors: tunable morphology and physical properties[J]. Nanotechnology, 28, 174002(2017).

    [63] Cai J G, Lv C, Watanabe A. Cost-effective fabrication of high-performance flexible all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further surface treatment[J]. Journal of Materials Chemistry A, 4, 1671-1679(2016).

    [64] Ye R Q, Peng Z W, Wang T et al. In situ formation of metal oxide nanocrystals embedded in laser-induced graphene[J]. ACS Nano, 9, 9244-9251(2015). http://pubs.acs.org/doi/abs/10.1021/acsnano.5b04138

    [65] Li C, Zhang X, Wang K et al. Scalable self-propagating high-temperature synthesis of graphene for supercapacitors with superior power density and cyclic stability[J]. Advanced Materials, 29, 1604690(2017).

    [66] Tittle C M, Yilman D, Pope M A et al. Robust superhydrophobic laser-induced graphene for desalination applications[J]. Advanced Materials Technologies, 3, 1700207(2018).

    [67] Rahimi R, Ochoa M, Yu W et al. Highly stretchable and sensitive unidirectional strain sensor via laser carbonization[J]. ACS Applied Materials & Interfaces, 7, 4463-4470(2015). http://europepmc.org/abstract/med/25686021

    [68] Li L, Zhang J, Peng Z et al. High-performance pseudocapacitive microsupercapacitors from laser-induced graphene[J]. Advanced Materials, 28, 838-845(2016). http://d.wanfangdata.com.cn/periodical/28bf7ed8272f0c0b9743ec75edc8ae12

    [69] Zheng Y, Bai H, Huang Z et al. Directional water collection on wetted spider silk[J]. Nature, 463, 640-643(2010). http://www.nature.com/articles/nature08729

    [70] Ataka K, Stripp S T, Heberle J. Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1828, 2283-2293(2013).

    [71] Zhu Y, Li L, Zhang C G et al. A seamless three-dimensional carbon nanotube graphene hybrid material[J]. Nature Communications, 3, 1-7(2012). http://www.nature.com/articles/ncomms2234

    [72] Tan K W, Jung B, Werner J G et al. Transient laser heating induced hierarchical porous structures from block copolymer-directed self-assembly[J]. Science, 349, 54-58(2015).

    [73] Wang F C. Tuning the structures and properties of porous graphene in laser-induced graphitization[J]. Journal of Laser Micro/Nanoengineering, 12, 165-168(2017).

    [74] Strauss V, Marsh K, Kowal M D et al. A simple route to porous graphene from carbon nanodots for supercapacitor applications[J]. Advanced Materials, 30, 1704449(2018).

    [75] Bereciartua P J, Corma A et al. Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene[J]. Science, 358, 1068-1071(2017).

    [76] Beebe D J, Moore J S, Bauer J M et al. Functional hydrogel structures for autonomous flow control inside microfluidic channels[J]. Nature, 404, 588-590(2000). http://www.nature.com/nature/journal/v404/n6778/abs/404588a0.html

    [77] Yao X, Zhang L Y, Wang S S. Pore size and pore-size distribution control of porous silica[J]. Sensors and Actuators B, 25, 347-352(1995).

    [78] Tiliakos A, Ceaus C, Iordache S M et al. Morphic transitions of nanocarbons via laser pyrolysis of polyimide films[J]. Journal of Analytical and Applied Pyrolysis, 121, 275-286(2016).

    [79] Thess A, Lee R, Nikolaev P et al. Crystalline ropes of metallic carbon nanotubes[J]. Science, 273, 483-487(1996).

    [80] Ye R Q, James D K, Tour J M. Laser-induced graphene: from discovery to translation[J]. Advanced Materials, 31, 1803621(2019).

    [81] Kurra N, Jiang Q, Nayak P et al. Laser-derived graphene: a three-dimensional printed graphene electrode and its emerging applications[J]. Nano Today, 24, 81-102(2019). http://www.sciencedirect.com/science/article/pii/S1748013218305589

    [82] Ye R Q, Chyan Y, Zhang J B et al. Laser-induced graphene formation on wood[J]. Advanced Materials, 29, 1702211(2017). http://onlinelibrary.wiley.com/doi/10.1002/adma.201702211/abstract

    [83] Kandola B K, Horrocks A R. Complex char formation in flame-retarded fibre-intumescent combinations:thermal analytical studies[J]. Polymer Degradation and Stability, 54, 289-303(1996).

    [84] Peng Z W, Lin J, Ye R Q et al. Flexible and stackable laser-induced graphene supercapacitors[J]. ACS Applied Materials & Interfaces, 7, 3414-3419(2015).

    [85] Stanford M G, Yang K, Chyan Y et al. Laser-induced graphene for flexible and embeddable gas sensors[J]. ACS Nano, 13, 3474-3482(2019). http://www.researchgate.net/publication/331610658_Laser-Induced_Graphene_for_Flexible_and_Embeddable_Gas_Sensors

    [86] Tao L Q, Tian H, Liu Y et al. An intelligent artificial throat with sound-sensing ability based on laser induced graphene[J]. Nature Communications, 8, 14579(2017). http://europepmc.org/abstract/MED/28232739

    [87] Stanford M G, Li J T, Chen Y D et al. Self-sterilizing laser-induced graphene bacterial air filter[J]. ACS Nano, 13, 11912-11920(2019).

    [88] Stanford M G, Li J T, Chyan Y et al. Laser-induced graphene triboelectric nanogenerators[J]. ACS Nano, 13, 7166-7174(2019). http://www.researchgate.net/publication/333353947_Laser-Induced_Graphene_Triboelectric_Nanogenerators

    [89] Zhang C, Lv W, Tao Y et al. Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage[J]. Energy & Environmental Science, 8, 1390-1403(2015). http://www.researchgate.net/publication/272522482_Towards_superior_volumetric_performance_design_and_preparation_of_novel_carbon_materials_for_energy_storage

    [90] Kyeremateng N A, Brousse T, Pech D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics[J]. Nature Nanotechnology, 12, 7-15(2017).

    [91] Beidaghi M, Gogotsi Y. Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors[J]. Energy & Environmental Science, 7, 867-884(2014).

    [92] Bae J, Song M K, Park Y J et al. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage[J]. Angewandte Chemie International Edition, 50, 1683-1687(2011).

    [93] Chmiola J, Largeot C, Taberna P L et al. Monolithic carbide-derived carbon films for micro-supercapacitors[J]. Science, 328, 480-483(2010). http://www.sciencemag.org/content/328/5977/480.abstract

    [94] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 7, 845-854(2008).

    [95] Yu D S, Goh K, Wang H et al. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage[J]. Nature Nanotechnology, 9, 555-562(2014).

    [96] Dimiev A, Kosynkin D V, Alemany L B et al. Pristine graphite oxide[J]. Journal of the American Chemical Society, 134, 2815-2822(2012).

    [97] Pech D, Brunet M, Durou H et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon[J]. Nature Nanotechnology, 5, 651-654(2010).

    [98] El-Kady M F, Kaner R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage[J]. Nature Communications, 4, 1475(2013). http://nsr.oxfordjournals.org/external-ref?access_num=10.1038/ncomms2446&link_type=DOI

    [99] Gao W, Singh N, Song L et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films[J]. Nature Nanotechnology, 6, 496-500(2011).

    [100] Tao L Q, Liu Y, Ju Z Y et al. A flexible 360-degree thermal sound source based on laser induced graphene[J]. Nanomaterials, 6, 112(2016).

    [101] Fenzl C, Nayak P, Hirsch T et al. Laser-scribed graphene electrodes for aptamer-based biosensing[J]. ACS Sensors, 2, 616-620(2017). http://www.ncbi.nlm.nih.gov/pubmed/28723173

    [102] Luo S D, Hoang P T, Liu T. Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays[J]. Carbon, 96, 522-531(2016).

    [103] Zhang C, Su J W, Deng H et al. Reversible self-assembly of 3D architectures actuated by responsive polymers[J]. ACS Applied Materials & Interfaces, 9, 41505-41511(2017).

    [104] Deng H, Dong Y, Zhang C et al. An instant responsive polymer driven by anisotropy of crystal phases[J]. Materials Horizons, 5, 99-107(2018). http://www.researchgate.net/publication/321239175_An_Instant_Responsive_Polymer_Driven_by_Anisotropy_of_Crystal_Phases

    [105] Wang C, Lu S Y, Zhang Z W. Inactivation of airborne bacteria using different UV sources: performance modeling, energy utilization, and endotoxin degradation[J]. Science of the Total Environment, 655, 787-795(2019).

    [106] Brigham K L, Meyrick B. Endotoxin and lung injury[J]. The American Review of Respiratory Disease, 133, 913-927(1986).

    [107] Danner R L, Elin R J, Hosseini J M et al. Endotoxemia in human septic shock[J]. Chest, 99, 169-175(1991).

    [108] Hadidane R, Roger-Regnault C, Bouattour H et al. Correlation between alimentary mycotoxin contamination and specific diseases[J]. Human Toxicology, 4, 491-501(1985).

    [109] Hedayati M T, Pasqualotto A C, Warn P A et al. Aspergillus flavus: human pathogen, allergen and mycotoxin producer[J]. Microbiology, 153, 1677-1692(2007). http://europepmc.org/abstract/MED/17526826

    [110] Wang Z L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors[J]. ACS Nano, 7, 9533-9557(2013). http://europepmc.org/abstract/med/24079963

    [111] Wang Z L, Wu W Z. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems[J]. Angewandte Chemie International Edition, 51, 11700-11721(2012).

    [112] Wang S H, Lin L, Wang Z L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics[J]. Nano Letters, 12, 6339-6346(2012).

    [113] Wang Z L, Chen J, Lin L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors[J]. Energy & Environmental Science, 8, 2250-2282(2015). http://pubs.rsc.org/en/content/articlelanding/2015/ee/c5ee01532d

    [114] Inagaki N, Tasaka S, Onodera A. Improved adhesion between Kapton film and copper metal by silane-coupling reactions[J]. Journal of Applied Polymer Science, 73, 1645-1654(1999).

    [115] Inagaki N, Tasaka S, Masumoto M. Improved adhesion between kapton film and copper metal by plasma graft polymerization of vinylimidazole[J]. Macromolecules, 29, 1642-1648(1996). http://pubs.acs.org/doi/abs/10.1021/ma9503571

    [116] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 1, 97-105(2007).

    [117] Zhang X C, Shkurinov A, Zhang Y. Extreme terahertz science[J]. Nature Photonics, 11, 16-18(2017).

    [118] Chen H T, Padilla W J, Cich M J et al. A metamaterial solid-state terahertz phase modulator[J]. Nature Photonics, 3, 148-151(2009).

    [119] Zhang X Q, Tian Z, Yue W S et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities[J]. Advanced Materials, 25, 4567-4572(2013). http://dx.doi.org/10.1002/adma.201204850

    [120] Hu D, Wang X, Feng S et al. Ultrathin terahertz planar elements[J]. Advanced Optical Materials, 1, 186-191(2013).

    [121] Liu W G, Hu B, Huang Z D et al[J]. Graphene-enabled electrically controlled terahertz meta-lens Photonics Research, 2018, 703-708.

    [122] He X Y, Liu F, Lin F T et al. Investigation of terahertz all-dielectric metamaterials[J]. Optics Express, 27, 13831-13844(2019).

    [123] Shi C, He X Y, Peng J et al. Tunable terahertz hybrid graphene-metal patterns metamaterials[J]. Optics & Laser Technology, 114, 28-34(2019).

    [124] Chen H H, Ma W L, Huang Z Y et al. Graphene-based materials toward microwave and terahertz absorbing stealth technologies[J]. Advanced Optical Materials, 7, 1801318(2019).

    [125] Irimia-Vladu M. “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future[J]. Chemical Society Reviews, 43, 588-610(2014).

    Wang Zongyuan, Hu Bin, Wu Xudong. Research Progress of Laser-Induced Graphene Technology[J]. Laser & Optoelectronics Progress, 2021, 58(1): 100003
    Download Citation