• Journal of Semiconductors
  • Vol. 40, Issue 6, 062002 (2019)
Endi Suhendi1, Lilik Hasanah1, Dadi Rusdiana1, Fatimah A. Noor2, Neny Kurniasih3, and Khairurrijal2
Author Affiliations
  • 1Physics of Electronic Material Research Division, Universitas Pendidikan Indonesia, Bandung 40154, Indonesia
  • 2Physics of Electronic Material Research Division, Institut Teknologi Bandung, Bandung 40132, Indonesia
  • 3Earth Physics and Physics of Complex Systems Research Division, Institut Teknologi Bandung, Bandung 40132, Indonesia
  • show less
    DOI: 10.1088/1674-4926/40/6/062002 Cite this Article
    Endi Suhendi, Lilik Hasanah, Dadi Rusdiana, Fatimah A. Noor, Neny Kurniasih, Khairurrijal. Comparison of tunneling currents in graphene nanoribbon tunnel field effect transistors calculated using Dirac-like equation and Schrödinger's equation[J]. Journal of Semiconductors, 2019, 40(6): 062002 Copy Citation Text show less
    References

    [1] K S Novoselov, A K Geim, S V Morozov et al. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).

    [2] C Berger, Z Song, X Li et al. Electronic confinement and coherence in patterned epitaxial graphene. Science, 312, 1191(2006).

    [3] D Jena, T Fang, Q Zhang et al. Zener tunneling in semiconducting nanotube and graphene nanoribbon p−n junctions. Appl Phys Lett, 93, 112106(2008).

    [4] W Yansen, M Abdullah. Application of airy function approach to model electron tunneling in graphene nanoribbon-based P−N junction diodes. Journal Nanosains & Nanoteknologi, 3, 18(2010).

    [5] L Brey, H A Fertig. Electronic states of graphene nanoribbons. Phys Rev, B73, 235411(2006).

    [6] Y W Son, M L Cohen, S G Loui. Energy gaps in graphene nanoribbons. Phys Rev Lett, 97, 216803(2006).

    [7] B Huang, Q Yan, G Zhou et al. Making a field effect transistor on a single graphene nanoribbon by selective doping. Appl Phys Lett, 91, 253122(2007).

    [8] J Knoch, J Appenzeller. Tunneling phenomena in carbon nanotube field-effect transistors. Phys. Status Solidi A, 205, 679(2008).

    [9] M I Katsnelson, K S Novoselov, A K Geim. Chiral tunneling and the Klein paradox in graphene. Nat Phys, 2, 620(2006).

    [10] E Suhendi, R Syariati, F A Noor et al. Simulation of Dirac tunneling current of an armchair graphene nanoribbon-based p–n junction using a transfer matrix method. Adv Mater Res, 974, 205(2014).

    [11] V Hung Nguyen, A Bournel, P Dollfus. Large peak-to-valley ratio of negative-differential-conductance in graphene p–n junctions. J Appl Phys, 109, 093706(2011).

    [12] P Nam Do, P Dollfus. Negative differential resistance in zigzag-edge graphene nanoribbon junction. J Appl Phys, 107, 063705(2010).

    [13] X Xu, G Xu, J Cao. Electron tunneling through a trapezoidal barrier in graphene. Jpn J Appl Phys, 49, 085201(2010).

    [14] E Suhendi, R Syariati, F A Noor et al. Modeling of Dirac electron tunneling current in bipolar transistor based on armchair graphene nanoribbon using a transfer matrix method. Adv Comput Sci Res, 5, 164(2015).

    [15] J Chauhan, J Guo. Assessment of high-frequency performance limits of graphene field-effect transistors. Nano Res, 4, 571(2011).

    [16] U Mukherjee, S Banerjee, R Sarkar et al. Single quantum well p–n junction diode based on graphene nanoribbon. Graphene, 3, 6(2015).

    [17] Y Khatami, J Kang, K Banerjee. Graphene nanoribbon based negative resistance device for ultra-low voltage digital logic applications. App Phys Lett, 102, 043114(2013).

    [18] M Noei, M Moradinasab, M Fathipour. A computational study of ballistic graphene nanoribbon field effect transistors. Phys E, 44, 1780(2012).

    [19] X Yang, J Chauhan, J Guo et al. Graphene tunneling FET and its applications in low-power circuit design. Proc of the 20th symposium on Great lakes symposium on VLSI, 263(2010).

    [20] Q Zhang, T Fang, H Xing et al. Graphene nanoribbon tunnel transistors. Electron Device Lett, 29, 1344(2008).

    [21] T M Abdolkader, M H Hassan, W Fikry. Solution of Schrödinger equation in double-gate MOSFETs using transfer matrix method. Electron Lett, 40, 20(2004).

    [22] F A Noor, M Abdullah et al. Comparison of electron transmittances and tunneling currents in an anisotropic TiNx/HfO2/SiO2/p-Si(100) metal–oxide–semiconductor (MOS) capacitor calculated using exponential- and airy-wavefunction approaches and a transfer matrix method. J Semicond, 31, 124002(2010).

    [23] W Z Shangguan, X Zhou, S B Chiah et al. Compact gate-current model based on transfer-matrix method. J Appl Phys, 97, 123709(2005).

    [24] K W Terrill, C Hu, P K Ko. An analytical model for the channel electric field in MOSFETs with graded-drain structures. IEEE Electron Device Lett, 5, 440(1984).

    [25]

    [26] M Tiwari, K K Sharma, L S Rawat et al. Impact of oxide thickness on gate capacitance, drain current and transconductance – a comprehensive analysis on MOSFET, nanowire FET and CNTFET devices. Int J Res Emerg Sci Technol, 2, 73(2015).

    [27] K I Bolotin, K J Sikes et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 146, 351(2008).

    [28] X Du, I Skachko, A Barker et al. Approaching ballistic transport in suspended graphene. Nature Nanotechnol, 3, 491(2008).

    [29]

    [30] X Wang, Y Ouyang, X Li et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett, 100, 206803(2008).

    [31] D Jimenez. A current-voltage model for Schottky-barrier graphene based transistors. Nanotechnology, 19, 345204(2008).

    Endi Suhendi, Lilik Hasanah, Dadi Rusdiana, Fatimah A. Noor, Neny Kurniasih, Khairurrijal. Comparison of tunneling currents in graphene nanoribbon tunnel field effect transistors calculated using Dirac-like equation and Schrödinger's equation[J]. Journal of Semiconductors, 2019, 40(6): 062002
    Download Citation