• Journal of Semiconductors
  • Vol. 40, Issue 6, 062002 (2019)
Endi Suhendi1, Lilik Hasanah1, Dadi Rusdiana1, Fatimah A. Noor2, Neny Kurniasih3, and Khairurrijal2
Author Affiliations
  • 1Physics of Electronic Material Research Division, Universitas Pendidikan Indonesia, Bandung 40154, Indonesia
  • 2Physics of Electronic Material Research Division, Institut Teknologi Bandung, Bandung 40132, Indonesia
  • 3Earth Physics and Physics of Complex Systems Research Division, Institut Teknologi Bandung, Bandung 40132, Indonesia
  • show less
    DOI: 10.1088/1674-4926/40/6/062002 Cite this Article
    Endi Suhendi, Lilik Hasanah, Dadi Rusdiana, Fatimah A. Noor, Neny Kurniasih, Khairurrijal. Comparison of tunneling currents in graphene nanoribbon tunnel field effect transistors calculated using Dirac-like equation and Schrödinger's equation[J]. Journal of Semiconductors, 2019, 40(6): 062002 Copy Citation Text show less

    Abstract

    The tunneling current in a graphene nanoribbon tunnel field effect transistor (GNR-TFET) has been quantum mechanically modeled. The tunneling current in the GNR-TFET was compared based on calculations of the Dirac-like equation and Schrödinger's equation. To calculate the electron transmittance, a numerical approach-namely the transfer matrix method (TMM)-was employed and the Launder formula was used to compute the tunneling current. The results suggest that the tunneling currents that were calculated using both equations have similar characteristics for the same parameters, even though they have different values. The tunneling currents that were calculated by applying the Dirac-like equation were lower than those calculated using Schrödinger's equation.
    $ H = {v_{\rm F}}\left[ \!\!\!{\begin{array}{*{20}{c}} 0 & { - i\hbar {\partial _{ z}} - \hbar {\partial _{ x}}}\\ { - i\hbar {\partial _{\rm z}} + \hbar {\partial _{ x}}} & 0 \end{array}}\!\!\! \right]. $ (1)

    View in Article

    $\begin{array}{*{20}{c}} {{\psi _1} = \frac{1}{\sqrt 2 }\left( \!\!\!\!{\begin{array}{*{20}{c}} 1\\ \frac{\left| {E - {V_1}} \right|}{E - {V_1}}{{\rm e}^{i{\theta _1}}} \end{array}}\!\!\!\! \right){{\rm e}^{i{k_1}z + i{k_{\rm n}}x}} + \frac{B_1}{\sqrt 2}\left(\!\!\!\! {\begin{array}{*{20}{c}} 1\\ { - \frac{{\left| {E - {V_1}} \right|}}{{E - {V_1}}}{{\rm e}^{ - i{\theta _1}}}} \end{array}} \!\!\!\!\right){{\rm e}^{ - i{k_1}z + i{k_n}x}},\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} & {} & {z \leqslant 0}\\ {{\psi _{\rm S,C,D}} = \frac{{{A_{\rm S,C,D}}}}{{\sqrt 2 }}\left(\!\!\!\! {\begin{array}{*{20}{c}} 1\\ {\frac{{\left| {E - {V_{\rm S,C,D}}} \right|}}{{E - {V_{\rm S,C,D}}}}{{\rm e}^{i{\theta _{\rm SCD}}}}} \end{array}} \!\!\!\!\right){{\rm e}^{i{k_{\rm SCD}}z + i{k_n}x}} + \frac{{{B_{\rm S,C,D}}}}{{\sqrt 2 }}\left(\!\!\!\! {\begin{array}{*{20}{c}} 1\\ { - \frac{{\left| {E - {V_{\rm S,C,D}}} \right|}}{{E - {V_{\rm S,C,D}}}}{{\rm e}^{ - i{\theta _{\rm SCD}}}}} \end{array}} \!\!\!\!\right){{\rm e}^{ - i{k_{\rm SCD}}z + i{k_{\rm n}}x}}\,\,\,} & {} & {0 < z \leqslant 2L}\\ {{\psi _2} = \frac{{{A_2}}}{{\sqrt 2 }}\left(\!\!\!\! {\begin{array}{*{20}{c}} 1\\ {\frac{{\left| {E - {V_2}} \right|}}{{E - {V_2}}}{{\rm e}^{i{\theta _2}}}} \end{array}}\!\!\!\! \right){{\rm e}^{ - i{k_2}z + i{k_{\rm n}}x}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} & {} & {z > 2L,} \end{array}$ (2)

    View in Article

    $ I_{\rm d} = \frac{{2{g_{\rm v}}e}}{h}\int\limits_{{E_1}}^{{E_2}} {\left[ {{f_{\rm S}}(E) - {f_{\rm D}}(E)} \right]} \,\,T(E){\rm d}E, $ (3)

    View in Article

    Endi Suhendi, Lilik Hasanah, Dadi Rusdiana, Fatimah A. Noor, Neny Kurniasih, Khairurrijal. Comparison of tunneling currents in graphene nanoribbon tunnel field effect transistors calculated using Dirac-like equation and Schrödinger's equation[J]. Journal of Semiconductors, 2019, 40(6): 062002
    Download Citation