• Laser & Optoelectronics Progress
  • Vol. 59, Issue 15, 1516004 (2022)
Yinggang Chen1、2, Hehe Dong1, Zhiquan Lin3, Yan Jiao1、2, Mengting Guo1, Yafei Wang1, Meng Wang1, Lei Zhang1, Shikai Wang1、***, Chunlei Yu1、3、**, and Lili Hu1、3、*
Author Affiliations
  • 1Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang , China
  • show less
    DOI: 10.3788/LOP202259.1516004 Cite this Article Set citation alerts
    Yinggang Chen, Hehe Dong, Zhiquan Lin, Yan Jiao, Mengting Guo, Yafei Wang, Meng Wang, Lei Zhang, Shikai Wang, Chunlei Yu, Lili Hu. Research Progress of Key Laser Materials in 900 nm Band[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516004 Copy Citation Text show less
    References

    [1] Dragic P D, Little L M, Papen G C. Fiber amplification in the 940-nm water vapor absorption band using the 4F3/2 →4I9/2 transition in Nd[J]. IEEE Photonics Technology Letters, 9, 1478-1480(1997).

    [2] Cook A L, Hendricks H D. Diode-laser-pumped tunable 896—939.5-nm neodymium-doped fiber laser with 43-mW output power[J]. Applied Optics, 37, 3276-3281(1998).

    [3] Schirripa S G, Cozzella L, Leccese F. Underwater optical wireless communications: overview[J]. Sensors, 20, 2261(2020).

    [4] Li F Q, Zhao B, Wei J et al. Continuously tunable single-frequency 455 nm blue laser for high-state excitation transition of cesium[J]. Optics Letters, 44, 3785-3788(2019).

    [5] Peng Y, Zhao Y, Li Y et al. Three methods to lock the second harmonic generation for 461 nm[J]. Chinese Journal of Lasers, 37, 345-350(2010).

    [6] Schwartz J L, Bonnet N A, Patterson G H. Photobleaching and photoactivation: following protein dynamics in living cells[J]. Nature Cell Biology, 5, 7-14(2003).

    [7] Shen Q H, Xu D Y, Qi G S et al. Blue-laser optical recording and its extended technology[J]. Optical Technique, 31, 921-924, 927(2005).

    [8] Gu B. High power blue-light semiconductor laser has opened a new door for metal processing[J]. MW Metal Forming, 1-6(2021).

    [9] Gao W N, Xu Z Y, Bi Y et al. Present development and tendency of laser display technology[J]. Strategic Study of CAE, 22, 85-91(2020).

    [10] Le Corre K, Gilles H, Girard S et al. Large core, low-NA Neodymium-doped fiber for high power CW and pulsed laser operation near 900 nm[C], JTu3A.20(2019).

    [11] Xin G F, Feng R Z, Chen G Y et al. 900 nm high output power semiconductor laser linear array[J]. Laser & Optoelectronics Progress, 40, 43-44(2003).

    [12] Gong Q R, Zhao C C, Yang Y L et al. Theoretical study on residual infrared absorption of Ti∶sapphire laser crystals[J]. Photonics Research, 9, 909-915(2021).

    [13] Zhang L P, Yin G L, Li F Q et al. All-solid-state tunable Ti∶sapphire laser with high-power and single-frequency at 900 nm[J]. Chinese Journal of Lasers, 44, 1201002(2017).

    [14] Johnson L F, Thomas R A. Maser oscillations at 0.9 and 1.35 microns in CaWO4∶Nd3+[J]. Physical Review, 131, 2038-2040(1963).

    [15] Dawson J W, Drobshoff A, Liao Z M et al. High-power 938-nm cladding pumped fiber laser[J]. Proceedings of SPIE, 4974, 75-82(2003).

    [16] Hu L L, Jiang Z H. Research progress of phosphate laser glass[J]. Bulletin of the Chinese Ceramic Society, 24, 125-129, 135(2005).

    [17] Lin B, Xiao K, Zhang Q L et al. Dual-wavelength Nd∶YAG laser operation at 1319 and 1338 nm by direct pumping at 885 nm[J]. Applied Optics, 55, 1844-1848(2016).

    [18] Tian Q Y, Xu B, Zhang Y S et al. 1.83-μm high-power and high-energy light source based on 885-nm in-band diode-pumped Nd∶YAG bulk laser operating on 4F3/2→ 4I15/2 transition[J]. Optics Express, 27, 12565-12571(2019).

    [19] Birnbaum M, Tucker A W, Fincher C L. CW room-temperature laser operation of Nd∶CAMGAR at 0.941 and 1.059 μm[J]. Journal of Applied Physics, 49, 2984-2985(1978).

    [20] Shayeganrad G, Cante S, Mosquera J P et al. Highly efficient 110-W closed-cycle cryogenically cooled Nd∶YAG laser operating at 946 nm[J]. Optics Letters, 45, 5368-5371(2020).

    [21] Fan T, Byer R. Modeling and CW operation of a quasi-three-level 946 nm Nd∶YAG laser[J]. IEEE Journal of Quantum Electronics, 23, 605-612(1987).

    [22] Risk W P, Lenth W. Room-temperature, continuous-wave, 946-nm Nd∶YAG laser pumped by laser-diode arrays and intracavity frequency doubling to 473 nm[J]. Optics Letters, 12, 993-995(1987).

    [23] Wallace R W, Harris S E. Oscillation and doubling of the 0.946-μ line in Nd3+∶YAG[J]. Applied Physics Letters, 15, 111-112(1969).

    [24] Czeranowsky C, Heumann E, Huber G. All-solid-state continuous-wave frequency-doubled Nd∶YAG-BiBO laser with 2.8-W output power at 473 nm[J]. Optics Letters, 28, 432-434(2003).

    [25] Cho C Y, Lee C Y, Chang C C et al. 24-W cryogenically cooled Nd∶YAG monolithic 946-nm laser with a slope efficiency >70%[J]. Optics Express, 23, 10126-10131(2015).

    [26] Sun Y X, Bai Y, Li D et al. 946 nm Nd∶YAG double Q-switched laser based on monolayer WSe2 saturable absorber[J]. Optics Express, 25, 21037-21048(2017).

    [27] Fix A, Ehret G, Löhring J et al. Water vapor differential absorption lidar measurements using a diode-pumped all-solid-state laser at 935 nm[J]. Applied Physics B, 102, 905-915(2011).

    [28] Li Y L, Jiang H L, Ni T Y et al. Diode-pumped CW frequency-doubled Nd∶GSAG-LBO blue laser at 471 nm[J]. Laser Physics Letters, 8, 259-262(2011).

    [29] Lv Y F, Xia J, Lin J Q et al. Diode-pumped CW frequency-doubled Nd∶CNGG-BiBO blue laser at 468 nm[J]. Laser Physics Letters, 8, 103-106(2011).

    [30] Zheng Q, Yao Y, Li B et al. 13.2 W laser-diode-pumped Nd∶YVO4/LBO blue laser at 457 nm[J]. Journal of the Optical Society of America B, 26, 1238-1242(2009).

    [31] Gao J, Yu X, Li X D et al. 456-nm deep-blue laser generation by intracavity frequency doubling of Nd∶GdVO4 under 879-nm diode pumping[J]. Laser Physics, 19, 111-114(2009).

    [32] Gao J, Yan R P, Yu X et al. High-power, high-repetition-rate actively Q-switched 916 nm laser and the frequency doubled pulsed 458 nm blue laser[J]. Optics & Laser Technology, 58, 161-165(2014).

    [33] Yan R P, Zhao C, Li X D et al. Quasi-three-level Nd∶GdYNbO4 927 nm laser under 879 nm laser diode pumping[J]. Laser Physics, 28, 085803(2018).

    [34] Yan R P, Zhou Y P, Li X D et al. 4F3/2→ 4I9/2 and 4F3/2→ 4I13/2 laser operations with a Nd∶GdTaO4 crystal[J]. Optics & Laser Technology, 131, 106444(2020).

    [35] Strohmaier S G P, Eichler H J, Bisson J F et al. Ceramic Nd∶YAG laser at 946 nm[J]. Laser Physics Letters, 2, 383-386(2005).

    [36] Zhang C, Zhang X Y, Wang Q P et al. Diode-pumped Q-switched 946 nm Nd∶YAG ceramic laser[J]. Laser Physics Letters, 6, 521-525(2009).

    [37] Zhu H Y, Xu C W, Zhang J et al. Highly efficient continuous-wave Nd∶YAG ceramic lasers at 946 nm[J]. Laser Physics Letters, 10, 075802(2013).

    [38] Chen D Y, Pan H, Yan R P et al. LD pumped passively Q-switched ceramic Nd∶YAG 946 nm laser with a high peak power output[J]. Optical and Quantum Electronics, 48, 81(2016).

    [39] Sattayaporn S, Aka G, Loiseau P et al. Optical spectroscopic properties, 0.946 and 1.074 μm laser performances of Nd3+-doped Y2O3 transparent ceramics[J]. Journal of Alloys and Compounds, 711, 446-454(2017).

    [40] Alcock I P, Ferguson A I, Hanna D C et al. Continuous-wave oscillation of a monomode neodymium-doped fibre laser at 0.9 μm on the 4F3/2 → 4I9/2 transition[J]. Optics Communications, 58, 405-408(1986).

    [41] Alcock I P, Ferguson A I, Hanna D C et al. Tunable, continuous-wave neodymium-doped monomode-fiber laser operating at 0.900—0.945 and 1.070—1.135 μm[J]. Optics Letters, 11, 709-711(1986).

    [42] Soh D B S, Yoo S, Nilsson J et al. Neodymium-doped cladding-pumped aluminosilicate fiber laser tunable in the 0.9 μm wavelength range[J]. IEEE Journal of Quantum Electronics, 40, 1275-1282(2004).

    [43] Yoo S, Soh D B S, Kim J et al. Analysis of W-type waveguide for Nd-doped fiber laser operating near 940 nm[J]. Optics Communications, 247, 153-162(2005).

    [44] Kim J, Dupriez P, Soh D B S et al. Core area scaling of Nd∶Al-doped silica depressed clad hollow optical fiber and Q-switched laser operation at 0.9 μm[J]. Optics Letters, 31, 2833-2835(2006).

    [45] Bartolacci C, Laroche M, Robin T et al. Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930 nm[J]. Applied Physics B, 98, 317-322(2010).

    [46] Bartolacci C, Laroche M, Gilles H et al. Generation of picosecond blue light pulses at 464 nm by frequency doubling an Nd-doped fiber based Master Oscillator Power Amplifier[J]. Optics Express, 18, 5100-5105(2010).

    [47] Laroche M, Cadier B, Gilles H et al. 20 W continuous-wave cladding-pumped Nd-doped fiber laser at 910 nm[J]. Optics Letters, 38, 3065-3067(2013).

    [48] Leconte B, Gilles H, Robin T et al. 7.5 W blue light generation at 452 nm by internal frequency doubling of a continuous-wave Nd-doped fiber laser[J]. Optics Express, 26, 10000-10006(2018).

    [49] Corre K L, Robin T, Barnini A et al. Linearly-polarized pulsed Nd-doped fiber MOPA at 905 nm and frequency conversion to deep-UV at 226 nm[J]. Optics Express, 29, 4240-4248(2021).

    [50] Pax P H, Khitrov V V, Drachenberg D R et al. Scalable waveguide design for three-level operation in Neodymium doped fiber laser[J]. Optics Express, 24, 28633-28647(2016).

    [51] Wang A, George A K, Knight J C. Three-level neodymium fiber laser incorporating photonic bandgap fiber[J]. Optics Letters, 31, 1388-1390(2006).

    [52] Qian K, Wang H J, Laroche M et al. Mode-locked Nd-doped fiber laser at 930 nm[J]. Optics Letters, 39, 267-270(2014).

    [53] Chen B Y, Jiang T X, Zong W J et al. 910 nm femtosecond Nd-doped fiber laser for in vivo two-photon microscopic imaging[J]. Optics Express, 24, 16544-16549(2016).

    [54] Chen B Y, Rong H, Huang X S et al. Robust hollow-fiber-pigtailed 930 nm femtosecond Nd∶fiber laser for volumetric two-photon imaging[J]. Optics Express, 25, 22704-22709(2017).

    [55] Wang S Y, Li Y J, Chen Y C et al. Femtosecond all-polarization-maintaining Nd fiber laser at 920 nm mode locked by a biased NALM[J]. Optics Express, 29, 38199-38205(2021).

    [56] Wang Y F, Zhang Y M, Cao J K et al. 915 nm all-fiber laser based on novel Nd-doped high alumina and yttria glass @ silica glass hybrid fiber for the pure blue fiber laser[J]. Optics Letters, 44, 2153-2156(2019).

    [57] Wang Y F, Li X Y, Wu J M et al. Three-level all-fiber laser at 915 nm based on polarization-maintaining Nd3+-doped silica fiber[J]. Chinese Optics Letters, 18, 011401(2020).

    [58] Fu S J, Zhu X S, Zong J et al. Single-frequency Nd3+-doped phosphate fiber laser at 915 nm[J]. Journal of Lightwave Technology, 39, 1808-1813(2021).

    [59] Dragic P D, Papen G C. Efficient amplification using the 4F3/2 → 4I9/2 transition in Nd-doped silica fiber[J]. IEEE Photonics Technology Letters, 11, 1593-1595(1999).

    [60] Wang Y F, Chen W W, Cao J K et al. Boosting the branching ratio at 900 nm in Nd3+ doped germanophosphate glasses by crystal field strength and structural engineering for efficient blue fiber lasers[J]. Journal of Materials Chemistry C, 7, 11824-11833(2019).

    [61] Wang S, Lou F, Yu C et al. Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass[J]. Journal of Materials Chemistry C, 2, 4406-4414(2014).

    [62] Xu W B, Wang M, Zhang L et al. Effect of P5+/Al3+ molar ratio on structure and spectroscopic properties of Nd3+/Al3+/P5+ co-doped silica glass[J]. Journal of Non-Crystalline Solids, 432, 285-291(2016).

    [63] Wang S K, Xu W B, Wang F et al. Yb3+-doped silica glass rod with high optical quality and low optical attenuation prepared by modified Sol-gel technology for large mode area fiber[J]. Optical Materials Express, 7, 2012-2022(2017).

    [64] Jiao Y, Guo M T, Wang R L et al. Influence of Al/Er ratio on the optical properties and structures of Er3+/Al3+ co-doped silica glasses[J]. Journal of Applied Physics, 129, 053104(2021).

    [65] Wang F, Wang M, Shao C Y et al. Highly fluorine and ytterbium doped polarization maintaining large mode area photonic crystal fiber via the Sol-gel process[J]. Optics Express, 29, 41882-41893(2021).

    [66] Wang S K, Yu C L, Hu L L. Nd-doped quartz glass with improved 900 nm fluorescence intensity and preparation method[P].

    Yinggang Chen, Hehe Dong, Zhiquan Lin, Yan Jiao, Mengting Guo, Yafei Wang, Meng Wang, Lei Zhang, Shikai Wang, Chunlei Yu, Lili Hu. Research Progress of Key Laser Materials in 900 nm Band[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516004
    Download Citation