• Laser & Optoelectronics Progress
  • Vol. 59, Issue 15, 1516004 (2022)
Yinggang Chen1、2, Hehe Dong1, Zhiquan Lin3, Yan Jiao1、2, Mengting Guo1, Yafei Wang1, Meng Wang1, Lei Zhang1, Shikai Wang1、***, Chunlei Yu1、3、**, and Lili Hu1、3、*
Author Affiliations
  • 1Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang , China
  • show less
    DOI: 10.3788/LOP202259.1516004 Cite this Article Set citation alerts
    Yinggang Chen, Hehe Dong, Zhiquan Lin, Yan Jiao, Mengting Guo, Yafei Wang, Meng Wang, Lei Zhang, Shikai Wang, Chunlei Yu, Lili Hu. Research Progress of Key Laser Materials in 900 nm Band[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516004 Copy Citation Text show less
    Energy level diagram of Nd3+ [14]
    Fig. 1. Energy level diagram of Nd3+ [14]
    Common strategies for Nd3+ 900 nm solid state lasers[20]
    Fig. 2. Common strategies for Nd3+ 900 nm solid state lasers[20]
    Frequency doubling blue laser of Nd∶YAG 900 nm laser pumped by laser diode array. (a) Experimental setup; (b) curves of output power and pump power [22]
    Fig. 3. Frequency doubling blue laser of Nd∶YAG 900 nm laser pumped by laser diode array. (a) Experimental setup; (b) curves of output power and pump power [22]
    Spectral characteristic of the Nd∶YAG crystal. (a) Absorption spectra; (b) 4F3/2→4I9/2 transition fluorescence spectra; (c) 4F3/2→4I11/2 transition fluorescence spectra[25]
    Fig. 4. Spectral characteristic of the Nd∶YAG crystal. (a) Absorption spectra; (b) 4F3/24I9/2 transition fluorescence spectra; (c) 4F3/24I11/2 transition fluorescence spectra[25]
    10 W grade blue laser produced by Nd∶YVO4 900 nm laser frequency doubling[31]
    Fig. 5. 10 W grade blue laser produced by Nd∶YVO4 900 nm laser frequency doubling[31]
    Nd∶YAG ceramic 900 nm Q-switched laser based on Cr∶YAG saturable absorber[38]
    Fig. 6. Nd∶YAG ceramic 900 nm Q-switched laser based on Cr∶YAG saturable absorber[38]
    Measured refractive index profile for W-type fiber[42]
    Fig. 7. Measured refractive index profile for W-type fiber[42]
    Picosecond pulsed blue light laser based on W type Nd-doped silica fiber [46]
    Fig. 8. Picosecond pulsed blue light laser based on W type Nd-doped silica fiber [46]
    Close to ten watt blue laser based on large-mode-area Nd-doped silica fiber[48]
    Fig. 9. Close to ten watt blue laser based on large-mode-area Nd-doped silica fiber[48]
    Large mode field photonic crystal fibers for Nd3+ 900 nm laser. (a) 225 µm diameter[49]; (b) 125 µm diameter[50]
    Fig. 10. Large mode field photonic crystal fibers for Nd3+ 900 nm laser. (a) 225 µm diameter[49]; (b) 125 µm diameter[50]
    Fluorescence imaging of zebrafish blood vessels by Nd3+ 900 nm femtosecond fiber laser[53]
    Fig. 11. Fluorescence imaging of zebrafish blood vessels by Nd3+ 900 nm femtosecond fiber laser[53]
    Experimental setup of Nd3+ 900 nm all-fiber laser[56]
    Fig. 12. Experimental setup of Nd3+ 900 nm all-fiber laser[56]
    Al-Nd co-doped and I-Al-Nd co-doped silica glass. (a) Normalized fluorescence spectrum; (b) fluorescence decay spectrum[66]
    Fig. 13. Al-Nd co-doped and I-Al-Nd co-doped silica glass. (a) Normalized fluorescence spectrum; (b) fluorescence decay spectrum[66]
    MOPA amplifier based on I-Al-Nd co-doped silica fiber. (a) Optical path diagram; (b) input-output curve; (c) laser spectrum (inset: micrograph of the I-Al-Nd co-doped silica fiber cross section)
    Fig. 14. MOPA amplifier based on I-Al-Nd co-doped silica fiber. (a) Optical path diagram; (b) input-output curve; (c) laser spectrum (inset: micrograph of the I-Al-Nd co-doped silica fiber cross section)
    YearResearcherMaterialSchemeResearch level
    1978BirnbaumNd∶CaY2Mg2Ge3O12514.5 nm Ar+ laser end pump941 nm
    1987RiskNd∶YAG808 LD pump,room temperature;LiIO342 mW@946 nm,16%,TEM00 mode;100 µW@473 nm
    2017SunNd∶YAGDouble Q-switched,water cooled is 12 °C946 nm,2.63 mJ,10.78 ns,500 Hz,Mx2 =3.85,My2 =3.86.
    2020ShayeganradNd∶YAG868 nm LD pump,closed-cycle acoustic Stirling cryostat is 80 K113 W@946 nm,efficiency is 80%
    2011FixNd∶YGG806 nm LD pump,MOPA935 nm,30 mJ,100 Hz,M2 =1.4
    2011LvNd∶CNGG806 nm LD pump,thermal electronic cooled is 15 °C,BiBO490 mW@468 nm,Mx2 =1.27,My2 =1.41
    2009ZhengNd∶YVO4806.4 nm LD,thermoelectric cooled is 23 °C,LBO13.2 W@457 nm,efficiency is 34.7%,Mx2 =2.13,My2 =2.53
    2014GaoNd∶LuVO4808 nm LD end-pumped,acousto-opticalQ-switched1.47 W@916 nm,100 kHz,144 mW@458 nm,20 kHz
    2020YanNd∶GdTaO4879 nm LD pump928 nm,13.5 mJ,100 Hz,Mx2 =1.4,My2 =1.8
    2005StrohmaierNd∶YAG ceramic808 nm LD pump1.35 W@946 nm
    2016ChenNd∶YAG ceramicCr∶YAG passively Q-switched0.96 W@946 nm;12.4 kW,13 ns,8.2 kHz
    2017SattayapornNd∶Y2O3 ceramic808 nm LD,water-cooled is 5 °C1 W@946 nm,efficiency is 12.4%
    Table 1. Research progress of Nd3+ doped solid laser materials in 900 nm laser
    YearsResearcherAffiliationType of NDFSchemeResearch level
    1986AlcockUniversity of SouthamptonMonomode fiber590 nm dye laser pump900-945 nm tunable
    2004NilssonUniversity of Southampton9/100 µm,W-type,double-clad808 nm LD pump at both fiber ends2.4 W,922-942 nm tunable,41%
    2006NilssonUniversity of SouthamptonDepressed clad hollow optical fiberLD pump,water cooling4.6 W@927 nm,M2 =1.08
    2010LarocheUniversité de Caen5/125 µm,W-type,double-cladMOPA,two-stage amplifier,PPLN(1-2 ℃)2.08 W@928 nm,308 mW@464 nm
    2018LarocheNormandie Université20/60 µm,double-cladBow-tie cavity7.5 W@452 nm,Mx2 =1.0,My2 =1.5
    2021LarocheNormandie Université20/60 µm and 30/130 µmAmplified Q-switched oscillator24 W@905nm,510 mW@226 nm
    2015PaxLLNL*Photonic crystal fiber808/880 nm LD pump11.5 W,efficiency is 55%,M2=1.35
    2006KnightUniversity of BathPhotonic bandgap fiber808 nm Ti∶sapphire laser pump250 mW,Slop efficiency is 32%
    2016Wang APeking University

    5 μm core diameter,

    W-type

    Pre-chirp,808 nm LD pump at both fiber ends220 mW@920 nm,18%,114 fs,4.4 nJ
    2021Wang APeking UniversityPolarization-maintaining fiberNonlinear amplifying loop mirror400 mW@920 nm,25.2 nm 109 fs
    2019Wang YSCUT**10/125 µm,Y-Al-Si @ silica fiberAll-fiber,808 nm LD pump915 nm,signal-to-noise ratio is 50 dB
    2020Wang YSCUTPolarization-maintaining fiberAll-fiber,808 nm LD pump915 nm,gain is 1.0 dB/cm
    2021Fu SUniversity of Arizona4.4/125 µm,phosphate fiberAll-fiber,808 nm LD pump13.5 mW@915 nm,efficiency is 7.9%
    Table 2. Research progress of Nd3+ doped optical fiber 900 nm laser
    Yinggang Chen, Hehe Dong, Zhiquan Lin, Yan Jiao, Mengting Guo, Yafei Wang, Meng Wang, Lei Zhang, Shikai Wang, Chunlei Yu, Lili Hu. Research Progress of Key Laser Materials in 900 nm Band[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516004
    Download Citation