• Journal of Semiconductors
  • Vol. 41, Issue 10, 102403 (2020)
Zhang Zhang, Chao Chen, Tairan Fei, Hao Xiao, Guangjun Xie, and Xin Cheng
Author Affiliations
  • School of Electronics Science and Applied Physics, Hefei University of Technology, Hefei 230009, China
  • show less
    DOI: 10.1088/1674-4926/41/10/102403 Cite this Article
    Zhang Zhang, Chao Chen, Tairan Fei, Hao Xiao, Guangjun Xie, Xin Cheng. Wireless communication and wireless power transfer system for implantable medical device[J]. Journal of Semiconductors, 2020, 41(10): 102403 Copy Citation Text show less

    Abstract

    Traditional magnetically coupled resonant wireless power transfer technology uses fixed distances between coils for research, to prevent fluctuations in the receiving voltage, and lead to reduce transmission efficiency. This paper proposes a closed-loop control wireless communication wireless power transfer system with a wearable four-coil structure to stabilize the receiving voltage fluctuation caused by changes in the displacement between the coils. Test results show that the system can provide stable receiving voltage, no matter how the distance between the transmitting coil and the receiving coil is changed. When the transmission distance is 20 mm, the power transfer efficiency of the system can reach 18.5% under the open-loop state, and the stimulus parameters such as the stimulation period and pulse width can be adjusted in real time through the personal computer terminal.
    $ \omega = \frac{{\rm{1}}}{{\sqrt {{L_{\rm{1}}}{C_1}} }} = \frac{{\rm{1}}}{{\sqrt {{L_{\rm{2}}}{C_2}} }} = \frac{{\rm{1}}}{{\sqrt {{L_{\rm{3}}}{C_3}} }} = \frac{{\rm{1}}}{{\sqrt {{L_{\rm{4}}}{C_4}} }}, $(1)

    View in Article

    ${K_{\rm{xy}}} = \frac{{{M_{\rm{xy}}}}}{{\sqrt {{L_{\rm{x}}}{L_{\rm{y}}}} }},$(2)

    View in Article

    ${Q_{{n}}} = \frac{{\omega {L_{{n}}}}}{{{R_{{n}}}}},$(3)

    View in Article

    $\begin{array}{l} \eta \!=\! \\ \dfrac{{\left(\! {k_{12}^2{Q_1}{Q_2}} \!\right)\left(\! {k_{23}^2{Q_2}{Q_3}} \!\right)\left(\! {k_{34}^2{Q_3}{Q_4}} \!\right)}}{{\left[\! {\left( {1 \!+\! k_{12}^2{Q_1}{Q_2}} \!\right)\left(\! {1 \!+\! k_{34}^2{Q_3}{Q_4}} \!\right) \!+\! k_{23}^2{Q_2}{Q_3}} \!\right]\left[\! {\left(\! {1 \!+\! k_{23}^2{Q_2}{Q_3}} \!\right) \!+\! k_{34}^2{Q_3}{Q_4}} \!\right]}}.\end{array}$(4)

    View in Article

    $\begin{array}{l} \eta \cong \dfrac{{\left( {k_{12}^2{Q_1}{Q_2}} \right)\left(\! {k_{23}^2{Q_2}{Q_3}} \!\right)\left(\! {k_{34}^2{Q_3}{Q_4}} \right)}}{{\left[ {\left(\! {k_{12}^2{Q_1}{Q_2}} \!\right)\left(\! {k_{34}^2{Q_3}{Q_4}} \right) \!+\!\! k_{23}^2{Q_2}{Q_3}} \right]\left[ {\left( {1 + k_{23}^2{Q_2}{Q_3}} \right) \!+\! k_{34}^2{Q_3}{Q_4}} \right]}} \\ \Rightarrow \eta \cong \dfrac{{\left( {k_{12}^2{Q_1}{Q_2}} \right)\left( {k_{23}^2{Q_2}{Q_3}} \right)\left( {k_{34}^2{Q_3}{Q_4}} \right)}}{{\left( {k_{12}^2{Q_1}{Q_2}} \right)\left( {k_{34}^2{Q_3}{Q_4}} \right)\left( {1 + k_{23}^2{Q_2}{Q_3}} \right)}} \\ \Rightarrow \eta \cong \dfrac{{k_{23}^2{Q_2}{Q_3}}}{{1 + k_{23}^2{Q_2}{Q_3}}}. \\ \end{array} $(5)

    View in Article

    $\eta = \frac{{k_{14}^2{Q_1}{Q_4}}}{{1 + k_{14}^2{Q_1}{Q_4}}}.$(6)

    View in Article

    $\eta = \frac{{H_{12}^2H_{23}^2H_{34}^2}}{{\left[ {\left( {1 + H_{12}^2} \right)\left( {1 + H_{34}^2} \right) + H_{23}^2} \right]\left[ {\left( {1 + H_{23}^2} \right) + H_{34}^2} \right]}}.$(7)

    View in Article

    ${P_{\rm{rec}}} = \eta {P_{{\rm{out}}}}.$(8)

    View in Article

    Zhang Zhang, Chao Chen, Tairan Fei, Hao Xiao, Guangjun Xie, Xin Cheng. Wireless communication and wireless power transfer system for implantable medical device[J]. Journal of Semiconductors, 2020, 41(10): 102403
    Download Citation