• Infrared and Laser Engineering
  • Vol. 51, Issue 6, 20210879 (2022)
Wanru Zhang, Rongtao Su*, Can Li*, Song Zhang, Man Jiang, Pengfei Ma, Yanxing Ma, Jian Wu, and Pu Zhou
Author Affiliations
  • College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/IRLA20210879 Cite this Article
    Wanru Zhang, Rongtao Su, Can Li, Song Zhang, Man Jiang, Pengfei Ma, Yanxing Ma, Jian Wu, Pu Zhou. Research progress of narrow linewidth fiber laser oscillator (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20210879 Copy Citation Text show less
    References

    [1] C J Koester, E Snitzer. amplification in a fiber laser. Applied Optics, 3, 1182-1186(1964).

    [2] Stiles e. New developments in IPG fiber laser technology [C]5th International Wkshop on Fiber Lasers, 2009.

    [3] O''conn M, Gapontsev V, Fomin V, et al. Power scaling of SM fiber lasers toward 10 kW [C]Conference on Lasers ElectroOpticsInternational Quantum Electronics Conference, 2009.

    [4] J P Cariou, B Augere, M Valla. Laser source requirements for coherent lidars based on fiber technology. Comptes Rendus Physique, 7, 213-223(2006).

    [5] R Diaz, S C Chan, J M Liu. Lidar detection using a dual-frequency source. Optics Letters, 31, 3600-3602(2006).

    [6] F Yang, Q Ye, Z Pan, et al. 100-mW linear polarization single-frequency all-fiber seed laser for coherent Doppler lidar application. Optics Communications, 285, 149-152(2012).

    [7] R J Thompson, M Tu, D C Aveline, et al. High power single frequency 780 nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals. Optics Express, 11, 1709-1713(2003).

    [8] L R Taylor, F Yan, D B Calia. 50 W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers. Optics Express, 18, 8540-8555(2010).

    [9] P Zhou, R T Su, Y X Ma, et al. Review of coherent laser beam combining research progress in the past decade. Chinese Journal of Lasers, 48, 0401003(2021).

    [10] F Guo, D Kong, Q Zhang, et al. System development and clock transition spectroscopy detection of transportable 87Sr optical clock. Acta Optica Sinica, 40, 0902001(2020).

    [11] Y Ma, H Yan, Y Sun, et al. Recent progress of key technologies for spectral beam combining of fiber laser with dual-gratings configuration(Invited). Infrared and Laser Engineering, 47, 0103002(2018).

    [12] Y Zheng, Y Yang, J Wang, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation. Optics Express, 24, 12063-12071(2016).

    [13] W Shi, Q Fang, X Zhu, et al. Fiber lasers and their applications [Invited]. Applied Optics, 53, 6554-6568(2014).

    [14] S Fu, W Shi, Y Feng, et al. Review of recent progress on single-frequency fiber lasers [Invited]. Journal of the Optical Society of America B, 34, A49-A62(2017).

    [15] C Yang, X Cen, S Xu, et al. Research progress of single-frequency fiber laser. Acta Optica Sinica, 41, 0114002(2021).

    [16] C Robin, I Dajani, B Pulford. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power. Optics Letters, 39, 666-669(2014).

    [17] L Huang, H Wu, R Li, et al. 414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier. Optics Letters, 42, 1-4(2017).

    [18] W Lai, P Ma, W Liu, et al. 550-W single-frequency all-fiber amplifier with near-diffraction-limited beam quality. Chinese Journal of Lasers, 47, 0415001(2020).

    [19] Y Wang, W Ke, W Peng, et al. 3 kW, 0.2 nm narrow linewidth linearly polarized all-fiber laser based on a compact MOPA structure. Laser Physics Letters, 17, 075101(2020).

    [20] P Ma, H Xiao, W Liu, et al. All-fiberized and narrow-linewidth 5 kW power-level fiber amplifier based on a bidirectional pumping configuration. High Power Laser Science and Engineering, 9, e45(2021).

    [21] H Lin, R Tao, C Li, et al. 3.7 kW monolithic narrow linewidth single mode fiber laser through simultaneously suppressing nonlinear effects and mode instability. Optics Express, 27, 9716-9724(2019).

    [22] M Jiang, P Zhou, H Xiao, et al. A high-power narrow-linewidth 1018 nm fiber laser based on a single-mode–few-mode–single-mode structure. High Power Laser Science and Engineering, 3, 71-74(2015).

    [23] Khitrov V, Samson B, Manyam U, et al. Linearly polarized high power fiber lasers with monolithic PMLMAfiber LMAgrating based cavities their use f nonlinear wavelength conversion [C]Conference on Fiber Lasers II: Technology, Systems, Applications, 2005.

    [24] I M Jauncey, L Reekie. Single longitudinal mode operation of a Nd3+-doped fibre laser. Electronics Letters, 24, 24-26(1988).

    [25] G A Ball, W W Morey. Standing-wave monomode erbium fiber laser. IEEE Photonics Technology Letters, 3, 613-615(1991).

    [26] G A Ball, W H Glenn, W W Morey, et al. Modeling of short, single-frequency, fiber lasers in high-gain fiber. IEEE Photonics Technology Letters, 5, 649-651(1993).

    [27] J L Zyskind, V Mizrahi, D J Digiovanni, et al. Short single frequency Er-doped fibre laser. Electronics Letters, 28, 1385-1387(1992).

    [28] C Spiegelberg, J Geng, Y Hu, et al. Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003). Journal of Lightwave Technology, 22, 57-62(2004).

    [29] Kaneda Y, Spiegelberg C, Geng J, et al. 200mW, narrowlinewidth 1064.2nm Ybdoped fiber laser [C]Conference on Lasers ElectroOptics, 2004.

    [30] J Geng, J Wu, S Jiang. Efficient operation of diode-pumped single-frequency thulium-doped fiber lasers near 2 μm. Optics Letters, 32, 355-357(2007).

    [31] Wu J, Yao Z, Zong J, et al. Single frequency fiber laser at 2.05 μm based on Hodoped germanate glass fiber [C]Fiber Lasers VI: Technology, Systems, Applications, 2009.

    [32] Z Pan, H Cai, L Meng, et al. Single-frequency phosphate glass fiber laser with 100-mW output power at 1535 nm and its polarization characteristics. Chinese Optics Letters, 8, 52-54(2010).

    [33] S Xu, Z Yang, T Liu, et al. An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 μm. Optics Express, 18, 1249-1254(2010).

    [34] S Mo, S Xu, X Huang, et al. A 1014 nm linearly polarized low noise narrow-linewidth single-frequency fiber laser. Optics Express, 21, 12419-12423(2013).

    [35] S Xu, C Li, W Zhang, et al. Low noise single-frequency single-polarization ytterbium-doped phosphate fiber laser at 1083 nm. Optics Letters, 38, 501-503(2013).

    [36] Z Feng, S Mo, S Xu, et al. A compact linearly polarized low-noise single-frequency fiber laser at 1064 nm. Applied Physics Express, 6, 052701(2013).

    [37] Q Yang, S Xu, C Li, et al. A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95 μm. Chinese Physics Letters, 32, 62-65(2015).

    [38] X Guan, C Yang, Q Tian, et al. High-efficiency sub-watt in-band-pumped single-frequency DBR Tm3+-doped germanate fiber laser at 1950 nm. Optics Express, 26, 6817-6825(2018).

    [39] Z Zhang, A J Boyland, J K Sahu, et al. High-power single-frequency thulium-doped fiber DBR laser at 1943 nm. IEEE Photonics Technology Letters, 23, 417-419(2011).

    [40] S Fu, W Shi, J Lin, et al. Single-frequency fiber laser at 1950 nm based on thulium-doped silica fiber. Opt Letters, 40, 5283-5286(2015).

    [41] Q Fang, Y Xu, S Fu, et al. Single-frequency distributed Bragg reflector Nd doped silica fiber laser at 930 nm. Optics Letters, 41, 1829-1832(2016).

    [42] Fu S, Shi W, Lin J, et al. 2μm single frequency fiber laser based on thuliumdoped silica fiber [C]Fiber Lasers XIII: Technology, Systems, Applications, 2016.

    [43] S Fu, W Shi, Q Sheng, et al. Compact hundred-mW 2 µm single-frequency Thulium-doped silica fiber laser. IEEE Photonics Technology Letters, 29, 853-856(2017).

    [44] B Sun, J Jia, J Huang, et al. A 1030 nm single-frequency distributed Bragg reflector Yb-doped silica fiber laser. Laser Physics, 27, 105105(2017).

    [45] Z Liu, Y Xie, Z Cong, et al. 110 mW single-frequency Yb:YAG crystal-derived silica fiber laser at 1064 nm. Optics Letters, 44, 4307-4310(2019).

    [46] Y Wan, J Wen, C Jiang, et al. Over 255 mW single-frequency fiber laser with high slope efficiency and power stability based on an ultrashort Yb-doped crystal-derived silica fiber. Photonics Research, 9, 649-656(2021).

    [47] L Cai, F Wu, Y Wang. Analysis for the reflective spectrum characteristics of phase-shifted fiber gratings. Chinese Journal of Lasers, 36, 2070-2075(2009).

    [48] J T Kringlebotn, J L Archambault, L Reekie, et al. Er3+:Yb3+-codoped fiber distributed-feedback laser. Optics Letters, 19, 2101-2103(1994).

    [49] A Asseh, H Storoy, J T Kringlebotn, et al. 10 cm Yb3+ DFB fibre laser with permanent phase shifted grating. Electronics Letters, 31, 969-970(1995).

    [50] S A Babin, D V Churkin, A E Ismagulov, et al. Single frequency single polarization DFB fiber laser. Laser Physics Letters, 4, 428-432(2007).

    [51] A Schülzgen, L Li, D Nguyen, et al. Distributed feedback fiber laser pumped by multimode laser diodes. Optics Letters, 33, 614-616(2008).

    [52] S Agger, J H Povlsen, P Varming. Single-frequency thulium-doped distributed-feedback fiber laser. Optics Letters, 29, 1503-1505(2004).

    [53] Shen D Y, Zhang Z, Boyl A J, et al. Thuliumdoped distributedfeedback fiber laser with 0.3 W output at 1935 nm [C]Bragg Gratings, Photosensitivity, Poling in Glass Waveguides, 2007.

    [54] Zhang. Z, Shen. D Y, Boyland. A J, et al. High-power Tm-doped fiber distributed-feedback laser at 1943 nm. Optics Letters, 33, 2059-2061(2008).

    [55] M Bernier, V Michaudbelleau, S Levasseur, et al. All-fiber DFB laser operating at 2.8 μm. Optics Letters, 40, 81-84(2015).

    [56] Q Li, F Yan, W Peng, et al. DFB laser based on single mode large effective area heavy concentration EDF. Optics Express, 20, 23684(2012).

    [57] A A Wolf, M I Skvortsov, V A Kamynin, et al. All-fiber holmium distributed feedback laser at 2.07  μm. Optics Letters, 44, 3781-3784(2019).

    [58] Butov O V, Rybaltovsky A A, Vyatkin M Y, et al. Shtcavity DFB fiber lasers [C]Electromagics Research Symposiumspring, 2017.

    [59] O V Butov, A A Rybaltovsky, A P Bazakutsa, et al. 1030 nm Yb3+ distributed feedback short cavity silica-based fiber laser. Journal of the Optical Society of America B, 34, A43-A48(2017).

    [60] M I Skvortsov, A A Wolf, A V Dostovalov, et al. Distributed feedback fiber laser based on a fiber Bragg grating inscribed using the femtosecond point-by-point technique. Laser Physics Letters, 15, 035103(2018).

    [61] M I Skvortsov, A A Wolf, A A Vlasov, et al. Advanced distributed feedback lasers based on composite fiber heavily doped with erbium ions. Scientific Reports, 10, 14487(2020).

    [62] W Sun, J Shi, Y Yu, et al. All-fiber 1.55 μm erbium-doped distributed-feedback laser with single-polarization, single-frequency output by femtosecond laser line-by-line direct-writing. OSA Continuum, 4, 334-344(2021).

    [63] G A Ball, W W Morey. Continuously tunable single-mode erbium fiber laser. Optics Letters, 17, 420-422(1992).

    [64] Ibsen, M. , Eggleton, et al. Broadly tunable DBR fibre laser using sampled fibre Bragg gratings. Electronics Letters, 31, 37-38(1995).

    [65] S H Xu, Z M Yang, W N Zhang, et al. 400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser. Optics Letters, 36, 3708-3710(2011).

    [66] X Zhu, W. S, Zong J, et al. 976 nm single-frequency distributed Bragg reflector fiber laser. Optics Letters, 37, 4167(2012).

    [67] C Yang, Q Zhao, Z Feng, et al. 1120 nm kHz-linewidth single-polarization single-frequency Yb-doped phosphate fiber laser. Optics Express, 24, 29794(2016).

    [68] Y Hou, Z Qian, W Pu. Frequency- and intensity-noise suppression in Yb3+-doped single-frequency fiber laser by a passive optical-feedback loop. Optics Express, 24, 12991(2016).

    [69] Y Wang, J Wu, Q Zhao, et al. Single-frequency DBR Nd-doped fiber laser at 1120  nm with a narrow linewidth and low threshold. Optics Letters, 45, 2263-2266(2020).

    [70] S Fu, X Zhu, J Zong, et al. Single-frequency Nd3+-doped phosphate fiber laser at 915 nm. Journal of Lightwave Technology, 39, 1808-1813(2021).

    [71] S Fu, X Zhu, J Zong, et al. Diode-pumped 1.15 W linearly polarized single-frequency Yb3+-doped phosphate fiber laser. Optics Express, 29, 30637-30643(2021).

    [72] Y Tao, S Zhang, M Jiang, et al. High power and high efficiency single-frequency 1030 nm DFB fiber laser. Optics & Laser Technology, 145, 107519(2022).

    [73] X Zhu, J Zong, A Miller, et al. Single-frequency Ho3+-doped ZBLAN fiber laser at 1200 nm. Optics Letters, 37, 4185-4187(2012).

    [74] W Zhang, C Li, S Mo, et al. A compact low noise single frequency linearly polarized DBR fiber laser at 1550 nm. Chinese Physics Letters, 29, 084205(2012).

    [75] P Hofmann, C Voigtlander, S Nolte, et al. 550-mW output power from a narrow linewidth all-phosphate fiber laser. Journal of Lightwave Technology, 31, 756-760(2013).

    [76] C Yang, X Guan, W Lin, et al. Efficient 1.6 μm linearly-polarized single-frequency phosphate glass fiber laser. Optics Express, 25, 29078-29085(2017).

    [77] Y Hou, Q Zhang, S Qi, et al. 1.5 μm polarization-maintaining dual-wavelength single-frequency distributed Bragg reflection fiber laser with 28 GHz stable frequency difference. Optics Letters, 43, 1383-1386(2018).

    [78] M Jiang, P Zhou, X Gu. Ultralong π-phase shift fiber Bragg grating empowered single-longitudinal mode DFB phosphate fiber laser with low-threshold and high-efficiency. Scientific Reports, 8, 13131-13136(2018).

    [79] Q Wen, Z Sun, Y Gan, et al. Sub-kilohertz linewidth fiber laser by using Bragg grating filters. Applied Optics, 60, 4299-4304(2021).

    [80] X Cen, X Guan, C Yang, et al. Short-wavelength, in-band-pumped single- frequency DBR Tm3+-doped germanate fiber laser at 1.7 μm. IEEE Photonics Technology Letters, 33, 350-353(2021).

    [81] P R Morkel, G J Cowle, D N Payne. Traveling-wave erbium fiber ring laser with 60 kHz linewidth. Electronics Letters, 26, 632-634(1990).

    [82] Jhon Y M, Kim M W, Kim B K, et al. Singlefrequency singlepolarization Er3+doped fiber ring laser with less than 0.7 kHz linewidth [C]Conference on Lasers & Electrooptics, 1999.

    [83] A Suzuki, Y Takahashi, M Yoshida, et al. An ultralow noise and narrow linewidth λ/4-shifted DFB Er-doped fiber laser with a ring cavity configuration. IEEE Photonics Technology Letters, 19, 1463-1465(2007).

    [84] X He, S Xu, C Li, et al. 1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber. Optics Express, 21, 20800(2013).

    [85] R Poozesh, K Madanipour, P Parvin. High SNR watt-level single frequency Yb-doped fiber laser based on a saturable absorber filter in a cladding-pumped ring cavity. Journal of Lightwave Technology, 36, 4880-4886(2018).

    [86] K Wang, Z Wen, H Chen, et al. Single-frequency all-polarization-maintaining ytterbium-doped bidirectional fiber laser. Optics Letters, 46, 404-407(2020).

    [87] B Lu, J Kang, X Qi, et al. High-stability broadband wavelength-tunable single-frequency ytterbium-doped all-fiber compound ring cavity. IEEE Photonics Journal, 9, 1-8(2017).

    [88] C Yang, L Xia, Y Wang, et al. Wavelength tunable single longitudinal mode fiber laser pinned to 25 GHz spacing. Microwave and Optical Technology Letters, 56, 2404-2406(2014).

    [89] S Y Li, N Q Ngo, Z R Zhang. Tunable fiber laser with ultra-narrow linewidth using a tunable phase-shifted chirped fiber grating. IEEE Photonics Technology Letters, 20, 1482-1484(2008).

    [90] J Lu, S Chen, Y Bai. Study on single-mode compound-ring fiber laser. Optical Technology, 31, 212-213(2005).

    [91] P Barnsley, P Urquhart, C Millar, et al. Fiber Fox-Smith resonators: Application to single-longitudinal-mode operation of fiber lasers. Journal of the Optical Society of America A, 5, 1339-1346(1988).

    [92] H W Pang, Y Feng, L F Xing. Study on linear multi-cavities erbuim-doped fiber laser. Optoelectronic Technique & Information, 16, 24-26(2003).

    [93] O Xu, S Lu, S Feng, et al. Single-longitudinal-mode erbium-doped fiber laser with the fiber-Bragg-grating-based asymmetric two-cavity structure. Optics Communications, 282, 962-965(2009).

    [94] T Feng, F P Yan, Q Li, et al. Stable single longitudinal mode erbium-doped silica fiber laser based on an asymmetric linear three-cavity structure. Chinese Physics B, 22, 014208(2013).

    [95] Y Zhao, J Chang, Q Wang, et al. Research on a novel composite structure Er-doped DBR fiber laser with a π-phase shifted FBG. Optics Express, 21, 22515-22522(2013).

    [96] J Zhang, C Y Yue, G W Schinn, et al. Stable single-mode compound-ring erbium-doped fiber laser. Journal of Lightwave Technology, 14, 104-109(1996).

    [97] X Zhang, W Chen, Y Liu, et al. Single longitudinal mode fiber laser with multiple ring cavities and its frequency stabilization. Chinese Journal of Lasers, 34, 50-54(2007).

    [98] Y Tian, S Feng, Y Ma, et al. A wide-tunable single-longitudinal-mode fiber laser based on compound ring cavity and tunable fiber Bragg grating. Chinese Journal of Quantum Electronics, 30, 288-292(2013).

    [99] T Feng, D Ding, Z Zhao, et al. Switchable 10 nm-spaced dual-wavelength SLM fiber laser with sub-kHz linewidth and high OSNR using a novel multiple-ring configuration. Laser Physics Letters, 13, 105104(2016).

    [100] Z Wang, J Shang, K Mu, et al. Stable single-longitudinal-mode fiber laser with ultra-narrow linewidth based on convex-shaped fiber ring and Sagnac loop. IEEE Access, 7, 166398-166403(2019).

    [101] H Liu, Q Lu, S Wei, et al. Long-term stable 850-Hz linewidth single-longitudinal-mode ring cavity fiber laser using polarization-maintaining fiber. Applied Physics B, 126, 1-7(2020).

    [102] H Liu, J Zhang, S Wei, et al. Low-noise compound ring cavity fiber laser with stable single-longitudinal-mode operation. Chinese Journal of Lasers, 48, 0501017(2021).

    [103] J Ding, H Chen, J Bai. Research of tunable single-frequency fiber laser based on fiber ring filter. Laser & Optoelectronics Progress, 58, 366-371(2021).

    [104] L Zhang, J Zhang, Q Sheng, et al. Watt-level 1.7-μm single-frequency thulium-doped fiber oscillator. Optics Express, 29, 27048-27056(2021).

    [105] T Feng, F Yan, W Peng, et al. A high stability wavelength-tunable narrow-linewidth and single-polarization erbium-doped fiber laser using a compound-cavity structure. Laser Physics Letters, 11, 045101(2014).

    [106] T Feng, F Yan, S Liu, et al. Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings. Laser Physics Letters, 11, 125106(2014).

    [107] T Feng, F Yan, S Liu, et al. A switchable and wavelength-spacing tunable single-frequency and single-polarization dual-wavelength erbium-doped fiber laser based on a compound-cavity structure. Laser Physics, 24, 085101(2014).

    [108] N Park, J W Dawson, K J Vahala, et al. All fiber, low threshold, widely tunable single-frequency, erbium-doped fiber ring laser with a tandem fiber Fabry-Perot filter. Applied Physics Letters, 59, 2369-2371(1991).

    [109] A Polynkin, P Polynkin, M Mansuripur, et al. Single-frequency fiber ring laser with 1 W output power at 1.5 μm. Optics Express, 13, 3179-3184(2005).

    [110] X P Cheng, P Shum, C H Tse, et al. Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-PÉrot etalon. IEEE Photonics Technology Letters, 20, 976-978(2008).

    [111] G Das, Z J Chaboyer. Single-wavelength fiber laser with 250 mW output power at 1.57 µm. Optics Express, 17, 7750-7755(2009).

    [112] Y Bai, F Yan, T Feng, et al. Ultra-narrow-linewidth fiber laser in 2 μm band using saturable absorber based on PM-TDF. Chinese Journal of Lasers, 46, 0101003(2019).

    [113] B Wu, Y Liu, Q Zhang, et al. High efficient narrow linewidth fiber laser based on fiber grating Fabry-Perot cavity. Chinese Journal of Lasers, 34, 350-353(2007).

    [114] B Wu, Y Liu, S Liu, et al. 1550 nm high efficient narrow linewidth fiber laser. Journal of Optoelectronics·Laser, 18, 770-772(2007).

    [115] S Mo, X Huang, S Xu, et al. Compact slow-light single-frequency fiber laser at 1550 nm. Applied Physics Express, 8, 82703(2015).

    [116] M Horowitz, R Daisy. Narrow-linewidth, singlemode erbium-doped fibre laser with intracavity wave mixing in saturable absorber. Electronics Letters, 30, 648-649(1994).

    [117] L Yu, J Qian, J Luo, et al. Stable single-frequency fiber ring laser with linewidth less than 0.5 kHz. Chinese Journal of Quantum Electronics, 18, 345-348(2001).

    [118] Y W Song, S A Havstad, D Starodubov, et al. 40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG. IEEE Photonics Technology Letters, 13, 1167-1169(2001).

    [119] S Chen, W Li, M Zhang, et al. Optical fiber laser with 30 Hz line-width single mode output. Transaction of Beijing Institute of Technology, 26, 67-70(2006).

    [120] M Zhang, S Chen, L Fu, et al. A study of line-width compression for an er-doped optical fiber laser. Transaction of Beijing Institute of Technology, 28, 894-897(2008).

    [121] J Chen, Y Zhao, Y Zhu, et al. Narrow line-width ytterbium-doped fiber ring laser based on saturated absorber. IEEE Photonics Technology Letters, 29, 439-441(2017).

    [122] Z Xie, C Shi, Q Sheng, et al. A single-frequency 1064-nm Yb3+ -doped fiber laser tandem-pumped at 1018 nm. Optics Communications, 461, 125262(2020).

    [123] J Zhang, Q Sheng, L Zhang, et al. Single-frequency 1.7-μm Tm-doped fiber laser with optical bistability of both power and longitudinal mode behavior. Optics Express, 29, 21409-21417(2021).

    [124] M Zhou, G Stewart, G Whitenett. Stable single-mode operation of a narrow-linewidth, linearly polarized, erbium-fiber ring laser using a saturable absorber. Journal of Lightwave Technology, 24, 2179-2183(2006).

    [125] P Ou, Y Jia, B Cao, et al. Narrow-linewidth single-polarization frequency-modulated Er-doped fiber ring laser. Chinese Optics Letters, 6, 845-847(2008).

    [126] Z Dai, J Li, X Zhang, et al. Stable single-longitudinal-mode fiber laser using PM FBG F-P etalon and PM fiber saturable absorber. Optical & Quantum Electronics, 41, 1033-1040(2010).

    [127] P Xu, Z Hu, M Ma, et al. Mapping the optical frequency stability of the single-longitudinal-mode erbium-doped fiber ring lasers with saturable absorber. Optics & Laser Technology, 49, 337-342(2013).

    [128] T Yin, Y Song, X Jiang, et al. 400 mW narrow linewidth single-frequency fiber ring cavity laser in 2 um waveband. Optics Express, 27, 15794-15799(2019).

    [129] Z Qi, T Yin, X Jiang, et al. Narrow-linewidth high-efficiency single-frequency ytterbium-doped fiber laser with highly linear polarization at 1064  nm. Applied Optics, 60, 2833-2838(2021).

    [130] F Wei, X Yang, Z Tong, et al. Dual-wavelength narrow-linewidth fiber laser based on F-P fiber ring filter. Optik, 123, 1026-1029(2011).

    [131] X Fang, Z Tong, Y Cao, et al. Narrow linewidth ring cavity fiber laser using F-P fiber ring filter. Infrared and Laser Engineering, 42, 329-333(2013).

    [132] S A Havstad. Loop-mirror filters based on saturable-gain or absorber gratings. Optics Letters, 24, 1466-1468(1999).

    [133] S Huang, Y Feng, J Dong, et al. 1083 nm single frequency ytterbium doped fiber laser. Laser Physics Letters, 2, 498-501(2005).

    [134] G Sun, Y Zhou, Y Hu, et al. Switchable erbium-doped fiber ring laser based on Sagnac loop mirror incorporating few-mode high birefringence fiber. Optics Communications, 284, 1608-1611(2011).

    [135] M Yin, S Huang, B Lu, et al. Slope efficiency over 30% single-frequency ytterbium-doped fiber laser based on Sagnac loop mirror filter. Applied Optics, 52, 6799-6803(2013).

    [136] C H Yeh, T J Huang, Z Q Yang, et al. Stable single-longitudinal-mode erbium fiber ring laser utilizing self-injection and saturable absorber. IEEE Photonics Journal, 9, 1-6(2017).

    [137] C Shi, S Fu, G Shi, et al. All-fiberized single-frequency silica fiber laser operating above 2 μm based on SMS fiber devices. Optik, 187, 291-296(2019).

    [138] Zhou J, Luo A, Luo Z, et al. Dualwavelength singlefrequency fiber laser based on graphene saturable absber [C]ASIA Communications Photonics Conference, 2014.

    [139] S Chen, Q Wang, C Zhao, et al. Stable single-longitudinal-mode fiber ring laser using topological insulator-based saturable absorber. Journal of Lightwave Technology, 32, 3836-3842(2014).

    [140] J Deng, H Chen, B Lu, et al. Single frequency Yb-doped fiber laser based on graphene loop mirror filter. Journal of Optics, 17, 025802(2015).

    [141] B Lu, L Yuan, X Qi, et al. MoS2 saturable absorber for single frequency oscillation of highly Yb-doped fiber laser. Chinese Optics Letters, 14, 071404(2016).

    [142] Z Sun, X Jiang, Q Wen, et al. Single frequency fiber laser based on an ultrathin metal–organic framework. Journal of Materials Chemistry C, 7, 4662-4666(2019).

    [143] H Sabert, R Ulrich. Gain stabilization in a narrow-band optical filter. Optics Letters, 17, 1161-1163(1992).

    [144] Y Takushima, S Yamashita. Single-frequency and polarization-stable oscillation of Fabry-Perot fiber laser using a nonpolarization-maintaining fiber and an intracavity etalon. IEEE Photonics Technology Letters, 8, 1468-1470(1996).

    [145] Guo Y, Wang D, Liu F, et al. A novel singlemode, linearly polarized, erbiumdoped fiber laser with a stabilized frequency [C]Second International Conference on Electric Technology & Civil Engineering, 2013.

    [146] D I Chang, M J Guy. Single-frequency erbium fibre laser using the twisted-mode technique. Electronics Letters, 32, 1786-1787(1996).

    [147] S Mo, Z Li, X Huang, et al. 820 Hz linewidth short-linear-cavity single-frequency fiber laser at 1.5 μm. Laser Physics Letters, 11, 035101(2014).

    [148] S Mo, X Huang, S Xu, et al. 600-Hz linewidth short-linear-cavity fiber laser. Optics Letters, 39, 5818-5821(2014).

    [149] A E Siegman, V Evtuhov. A "Twisted-Mode" technique for obtaining axially uniform energy density in a laser cavity. Applied Optics, 4, 142-143(1965).

    [150] Shevy Y, Shevy D, Lee R, et al. Slow light laser oscillat [C]Optical Fiber Communication Conference, 2010.

    [151] L M Yuan, J B Lu, J Kang, et al. Narrow-linewidth Single-frequency Yitterbium-doped Fiber Laser at 1083 nm. Acta Photonica Sinica, 45, 0814003(2016).

    [152] Liu Z, Zhou P, Xu X, et al. Coherent Beam Combining of High Average Power Fiber Lasers [M]. Beijing: National Defense Industry Press, 2016. (in Chinese)

    [153] M Nikles, L Thevenaz. Brillouin gain spectrum characterization in single-mode optical fibers. Lightwave Technology Journal of, 15, 1842-1851(1997).

    [154] S P Smith, F Zarinetchi, S Ezekiel. Narrow-linewidth stimulated Brillouin fiber laser and applications. Optics Letters, 16, 393-395(1991).

    [155] G J Cowle, D Y Stepanov. Hybrid Brillouin/erbium fiber laser. Optics Letters, 21, 1250-1252(1996).

    [156] W Chen, Y Zhang, M Ren, et al. Experimental study of single-longitudinal-mode Brillouin erbium-doped fiber laser. Acta Optica Sinica, 29, 1740-1744(2008).

    [157] Y Liu, J Yu, W Wang, et al. Narrow Linewidth Single Longitudinal Mode Brillouin Fiber Laser Based on Feedback Fiber Loop. Acta Optica Sinica, 33, 168-172(2013).

    [158] S W Harun, R Parvizi, S Shahi, et al. Compact Bi-EDF-based Brillouin erbium fiber laser operating at the 1560-nm region. IEEE Photonics Journal, 1, 254-258(2009).

    [159] H Zhou, M Chen, W Chen, et al. Brillouin-erbium fiber laser with ultra-short ring cavity. Chinese Journal of Lasers, 39, 0702010(2012).

    [160] C Mo, M Zhou, Y Zhang, et al. Ultranarrow-linewidth Brillouin/erbium fiber laser based on 45-cm erbium-doped fiber. IEEE Photonics Journal, 7, 1-6(2015).

    [161] O Zhonghua, B Xiaoyi, L Yang, et al. Ultranarrow Linewidth Brillouin Fiber Laser. Photonics Technology Letters, IEEE, 26, 2058-2061(2014).

    [162] L Yi, M Zhang, J Zhang, et al. Single-longitudinal-mode triple-ring Brillouin fiber laser with a saturable absorber ring resonator. Journal of Lightwave Technology, 35, 1744-1749(2017).

    [163] C Mo, W Chenyu, W Jianfei, et al. 53-dB phase noise suppression and Hz-range linewidth emission in compact Brillouin/erbium fiber laser. Optics Express, 25, 19216(2017).

    [164] C Mo, W Chenyu, W Jianfei, et al. Ultra-narrow-linewidth Brillouin/Erbium Fiber Laser. IEEE Photonics Journal, 7, 1-6(2017).

    [165] Y Li, C Wang, H Qi, et al. An ultra-narrow linewidth brillouin fiber laser based on distributed feedback fiber laser. Laser & Optoelectronics Progress, 57, 0702010(2020).

    [166] Z Zhou, L Chen, X Bao. Mode characteristic manipulation of random feedback interferometers in Brillouin random fiber laser. Optics Letters, 45, 678-681(2020).

    [167] T Zhu, X Bao, L Chen, et al. Experimental study on stimulated Rayleigh scattering in optical fibers. Optics Express, 18, 22958-22963(2010).

    [168] T Zhu, X Bao, L Chen. A single longitudinal-mode tunable fiber ring laser based on stimulated Rayleigh scattering in a nonuniform optical fiber. Journal of Lightwave Technology, 29, 1802-1807(2011).

    [169] G Yin, B Saxena, X Bao. Tunable Er-doped fiber ring laser with single longitudinal mode operation based on Rayleigh backscattering in single mode fiber. Optics Express, 19, 25981-25989(2011).

    [170] T Zhu, F Y Chen, S H Huang, et al. An ultra-narrow linewidth fiber laser based on Rayleigh backscattering in a tapered optical fiber. Laser Physics Letters, 10, 055110(2013).

    [171] T Zhu, S Huang, L Shi, et al. Rayleigh backscattering: A method to highly compress laser linewidth. Chinese Science Bulletin, 59, 4631-4636(2014).

    [172] Zhu T, Shi L, Huang S. Ultranarrow linewidth fiber laser with selfinjection feedback based on Rayleigh backscattering [C]CLEO: Science Innovations, 2014.

    [173] T Zhu, B Zhang, L Shi, et al. Tunable dual-wavelength fiber laser with ultra-narrow linewidth based on Rayleigh backscattering. Optics Express, 24, 1324-1330(2016).

    [174] J Gu, Y Yang, M Liu, et al. A switchable and stable single-longitudinal-mode, dual-wavelength erbium-doped fiber laser assisted by Rayleigh backscattering in tapered fiber. Journal of Applied Physics, 5, 1039-1040(2015).

    [175] J Cui, H Dang, K Feng, et al. Stimulated Brillouin scattering evolution and suppression in an integrated stimulated thermal Rayleigh scattering-based fiber laser. Photonics Research, 5, 233-238(2017).

    [176] Y Li, L Huang, L Gao, et al. Optically controlled tunable ultra-narrow linewidth fiber laser with Rayleigh backscattering and saturable absorption ring. Optics Express, 26, 26896-26906(2018).

    [177] P I Iroegbu, M Liu, T Lan, et al. 1310 nm Narrow Linewidth Laser Assisted by the Feedback of Double-FBGs. IEEE Photonics Journal, 12, 1-12(2020).

    [178] M Pang, X Bao, L Chen. Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser. Optics Letters, 38, 1866-1868(2013).

    [179] S Huang, T Zhu, G Yin, et al. Tens of hertz narrow-linewidth laser based on stimulated Brillouin and Rayleigh scattering. Optics Letters, 42, 5286-5289(2017).

    [180] W Lai, P Ma, H Xiao, et al. High-power narrow-linewidth fiber laser technology. High Power Laser and Particle Beams, 32, 7-28(2020).

    [181] H Xiao, P Zhou, X Wang, et al. Experimental investigation on 1018-nm high-power ytterbium-doped fiber amplifier. IEEE Photonics Technology Letters, 24, 1088-1090(2012).

    [182] W H Loh, B N Samson, L Dong, et al. High performance single frequency fiber grating-basederbium/ytterbium. Journal of Lightwave Technology, 16, 114-118(1998).

    [183] Koo K P, Kersey A D, Dridge A, et al. Measurement of the thermalnoiselimited frequency stability of a fiberoptic Bragggrating laser [C]Optical Fiber Communications Conference, 1995.

    [184] E Ronnekleiv. Frequency and intensity noise of single frequency fiber Bragg grating lasers. Optical Fiber Technology, 7, 206-235(2001).

    [185] L Li, M Morrell, T Qiu, et al. Short cladding-pumped Er/Yb phosphate fiber laser with 1.5 W output power. Applied Physics Letters, 85, 2721-2723(2004).

    [186] T Qiu, S Suzuki, A Schülzgen, et al. Generation of watt-level single-longitudinal-mode output from cladding-pumped short fiber lasers. Optics Letters, 30, 2748-2750(2005).

    [187] P Polynkin, A Polynkin, M Mansuripur, et al. Single-frequency laser oscillator with watts-level output power at 1.5 μm by use of a twisted-mode technique. Optics Letters, 30, 2745-2747(2005).

    [188] F B Slimen, S Chen, J Lousteau, et al. Highly efficient Tm3+ doped germanate large mode area single mode fiber laser. Optical Materials Express, 9, 4115-4125(2019).

    [189] J Limpert, T Schreiber, S Nolte, et al. High-power air-clad large-mode-area photonic crystal fiber laser. Optics Express, 11, 818-823(2003).

    [190] L Li, A Schülzgen, V L Temyanko, et al. Short-length microstructured phosphate glass fiber lasers with large mode areas. Optics Letters, 30, 1141-1143(2005).

    [191] L Li, A Schülzgen, V L Temyanko, et al. Ultracompact cladding-pumped 35-mm-short fiber laser with 4.7-W single-mode output power. Applied Physics Letters, 88, 161106(2006).

    [192] A Schülzgen, L Li, V L Temyanko, et al. Single-frequency fiber oscillator with watt-level output power using photonic crystal phosphate glass fiber. Optics Express, 14, 7087-7092(2006).

    [193] W S Mohammed, P Smith, X Gu. All-fiber multimode interference bandpass filter. Optics Letters, 31, 2547(2006).

    [194] J Zhou, B He, Y Feng, et al. High efficiency single-mode-multimode-single-mode fiber laser with diffraction-limited beam output. Applied Optics, 53, 5554-5558(2014).

    [195] Belke S, Becker F, Neumann B, et al. Completely monolithic linearly polarized highpower fiber laser oscillat [C]Conference on Fiber Lasers XI Technology, Systems, Applications, 2014.

    [196] Shirakawa A, Hiwada K, Hasegawa S, et al. Allfiber linearlypolarized Ybdoped fiber laser yielding 2.2W green second harmonics [C]Conference on Lasers & Electrooptics, 2005.

    [197] P Jelger, P Wang, J K Sahu, et al. High-power linearly-polarized operation of a cladding-pumped Yb fibre laser using a volume Bragg grating for wavelength selection. Optics Express, 16, 9507-9512(2008).

    [198] Xia, Liu, Songtao, et al. Linearly polarized operation of Yb-doped fiber laser by Brewster's angle-polished fiber end. Chinese Optics Letters, 8, 184-186(2010).

    [199] A Shirakawa, M Kamijo, J Ota, et al. Characteristics of linearly polarized Yb-doped fiber laser in an all-fiber configuration. IEEE Photonics Technology Letters, 19, 1664-1666(2007).

    [200] J Wang, J Hu, L Zhang, et al. A 100 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 1120 nm. Optics Express, 20, 28373-28378(2012).

    [201] C Willis, E Mckee, P Böswetter, et al. Highly polarized all-fiber thulium laser with femtosecond-laser-written fiber Bragg gratings. Optics Express, 21, 10467-10474(2013).

    [202] L Huang, H Zhang, X Wang, et al. A high-power LD-pumped linearly polarized Yb-doped fiber laser operating at 1152 nm with 42 GHz narrow linewidth and 18 dB PER. Laser Physics, 26, 075105(2016).

    [203] M Jiang, H Xu, P Zhou, et al. All-fiber, narrow linewidth and linearly polarized fiber laser in a single-mode-multimode-single-mode cavity. Applied Optics, 55, 6121-6124(2016).

    [204] C Su, X Y Pu, J H Wang, et al. study on output characteristics of linearly polarized all-fiber Yb-doped fiber laser. Chinese Journal of Lasers, 40, s102006(2013).

    [205] H Yusheng, X Qirong, Li Z W Dan, et al. All-fiber linearly polarized laser oscillator by fiber coiling loss control. Chinese Physics B, 27, 044201(2018).

    [206] Y Xu, Q Fang, Y Qin, et al. 2 kW narrow spectral width monolithic continuous wave in a near-diffraction-limited fiber laser. Applied Optics, 54, 9419-9421(2015).

    [207] Z Huang, X Liang, C Li, et al. Spectral broadening in high-power Yb-doped fiber lasers employing narrow-linewidth multilongitudinal-mode oscillators. Applied Optics, 55, 297-302(2016).

    [208] M Jiang, P Ma, L Huang, et al. kW-level, narrow-linewidth linearly polarized fiber laser with excellent beam quality through compact one-stage amplification scheme. High Power Laser Science and Engineering, 5, 47-51(2017).

    [209] P Yan, Y Huang, J Sun, et al. 3.1 kW monolithic MOPA configuration fibre laser bidirectionally pumped by non-wavelength-stabilized laser diodes. Laser Physics Letters, 14, 080001(2017).

    [210] Y Huang, P Yan, Z Wang, et al. 2.19 kW narrow linewidth FBG-based MOPA configuration fiber laser. Optics Express, 27, 3136-3145(2019).

    [211] Y Wang, Y Ma, W Peng, et al. 2.4 kW, narrow-linewidth, near-diffraction-limited all-fiber laser based on a one-stage master oscillator power amplifier. Laser Physics Letters, 17, 015102(2019).

    [212] Y Huang, Q Xiao, D Li, et al. 3 kW narrow linewidth high spectral density continuous wave fiber laser based on fiber Bragg grating. Optics & Laser Technology, 133, 106538(2021).

    [213] M Steinke, H Tünnermann, V Kuhn, et al. Single-frequency fiber amplifiers for next-generation gravitational wave detectors. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-13(2018).

    [214] F Wellmann, M Steinke, F Meylahn, et al. High power, single-frequency, monolithic fiber amplifier for the next generation of gravitational wave detectors. Optics Express, 27, 28523-28533(2019).

    [215] B Chen, Y Yu, C Wu, et al. High efficiency mid-infrared 3.8 μm MgO: PPLN optical parametric oscillator pumped by narrow linewidth 1064 nm fiber laser. Chinese Optics, 14, 361-367(2021).

    [216] Y Rao. Recent progress in ultra-long distributed fiber-optic sensing. Acta Physica Sinica, 66, 074207(2017).

    [217] W Shi, Q Fang, J Li, et al. High-performance fiber lasers for LIDARs. Infrared and Laser Engineering, 46, 0802001(2017).

    [218] Y Wang, T Li, Q Qiu, et al. Experiments on homodyne coherent optical communication with NPRO as light sources. Infrared and Laser Engineering, 45, 1122003(2016).

    [219] F Mihélic, D Bacquet, J Zemmouri, et al. Ultrahigh resolution spectral analysis based on a Brillouin fiber laser. Optics Letters, 35, 432-434(2010).

    [220] B Yao, Q Chen, Y Chen, et al. 280 mHz Linewidth DBR Fiber Laser Based on PDH Frequency Stabilization with Ultrastable Cavity. Chinese Journal of Lasers, 48, 0501014(2021).

    [221] Q Zhao, Z Zhang, B Wu, et al. Noise-sidebands-free and ultra-low-RIN 1.5 μm single-frequency fiber laser towards coherent optical detection. Photonics Research, 6, 326-331(2018).

    CLP Journals

    [1] Mo Chen, Jianfei Wang, Yang Lu, Xiaoyang Hu, Wei Chen, Zhou Meng. Research progress of ultra-narrow-linewidth Brillouin fiber laser (invited)[J]. Infrared and Laser Engineering, 2023, 52(6): 20230131

    [2] Zhenxu Bai, Xin Hao, Hao Zheng, Hui Chen, Yaoyao Qi, Jie Ding, Bingzheng Yan, Can Cui, Yulei Wang, Zhiwei Lv. Research progress of high-power free-space Raman amplification technology (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230337

    Wanru Zhang, Rongtao Su, Can Li, Song Zhang, Man Jiang, Pengfei Ma, Yanxing Ma, Jian Wu, Pu Zhou. Research progress of narrow linewidth fiber laser oscillator (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20210879
    Download Citation