• Infrared and Laser Engineering
  • Vol. 51, Issue 6, 20210879 (2022)
Wanru Zhang, Rongtao Su*, Can Li*, Song Zhang, Man Jiang, Pengfei Ma, Yanxing Ma, Jian Wu, and Pu Zhou
Author Affiliations
  • College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/IRLA20210879 Cite this Article
    Wanru Zhang, Rongtao Su, Can Li, Song Zhang, Man Jiang, Pengfei Ma, Yanxing Ma, Jian Wu, Pu Zhou. Research progress of narrow linewidth fiber laser oscillator (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20210879 Copy Citation Text show less
    Structure of linear short cavity DBR fiber laser
    Fig. 1. Structure of linear short cavity DBR fiber laser
    Structure of linear short cavity DFB fiber laser
    Fig. 2. Structure of linear short cavity DFB fiber laser
    Typical structure of ring cavity
    Fig. 3. Typical structure of ring cavity
    Structure of Fox-Smith linear composite cavity[91]
    Fig. 4. Structure of Fox-Smith linear composite cavity[91]
    Structure of double linear cavities all fiber single-frequency laser[93]
    Fig. 5. Structure of double linear cavities all fiber single-frequency laser[93]
    Typical structure of ring composite cavity
    Fig. 6. Typical structure of ring composite cavity
    Structure of main linear cavity + ring cavity single-frequency laser[105]
    Fig. 7. Structure of main linear cavity + ring cavity single-frequency laser[105]
    Structure of fiber Bragg grating F-P cavity
    Fig. 8. Structure of fiber Bragg grating F-P cavity
    Structure of single-frequency fiber laser based on F-P cavity mode selecting[110]
    Fig. 9. Structure of single-frequency fiber laser based on F-P cavity mode selecting[110]
    Structure of double fiber grating F-P cavities single-frequency fiber laser[113]
    Fig. 10. Structure of double fiber grating F-P cavities single-frequency fiber laser[113]
    Structure of single-frequency fiber laser based on unpumped doped fiber mode selecting
    Fig. 11. Structure of single-frequency fiber laser based on unpumped doped fiber mode selecting
    Structure of narrow linewidth fiber laser based on F-P fiber loop filter[130]
    Fig. 12. Structure of narrow linewidth fiber laser based on F-P fiber loop filter[130]
    Structure of single-frequency fiber laser based on loop mirror filter[135]
    Fig. 13. Structure of single-frequency fiber laser based on loop mirror filter[135]
    Structure of single-frequency laser based on two-dimensional material mode selecting[139]
    Fig. 14. Structure of single-frequency laser based on two-dimensional material mode selecting[139]
    Structure of achieving incoherent based on acoustooptic modulator[143]
    Fig. 15. Structure of achieving incoherent based on acoustooptic modulator[143]
    Structure of achieving incoherent based on Faraday rotator[144]
    Fig. 16. Structure of achieving incoherent based on Faraday rotator[144]
    Structure of virtual folded cavity single-frequency fiber laser[147]
    Fig. 17. Structure of virtual folded cavity single-frequency fiber laser[147]
    Typical structure of Brillouin fiber laser
    Fig. 18. Typical structure of Brillouin fiber laser
    Structure of Rayleigh scattering narrow linewidth random fiber laser using doped fiber gain[176]
    Fig. 19. Structure of Rayleigh scattering narrow linewidth random fiber laser using doped fiber gain[176]
    Structure of Rayleigh scattering narrow linewidth random fiber laser using SBS[178]
    Fig. 20. Structure of Rayleigh scattering narrow linewidth random fiber laser using SBS[178]
    Structure of high power narrow linewidth fiber laser based on PCF[192]
    Fig. 21. Structure of high power narrow linewidth fiber laser based on PCF[192]
    Structure of linear polarized high power narrow linewidth fiber laser based on polarizer[197]
    Fig. 22. Structure of linear polarized high power narrow linewidth fiber laser based on polarizer[197]
    Structure of linear polarized high power narrow linewidth fiber laser based on polarization maintaining gratings[203]
    Fig. 23. Structure of linear polarized high power narrow linewidth fiber laser based on polarization maintaining gratings[203]
    Structure of linear polarized high power narrow linewidth fiber laser based on bending loss[205]
    Fig. 24. Structure of linear polarized high power narrow linewidth fiber laser based on bending loss[205]
    Wavelength band/ μm YearInstitution [Ref.]StructureFiber typeWavelength/ nm Power/ mW Linewidth/ kHz
    12011South China Uni. of Tech. (SCUT), China[65]DBRYb3+ phosphate 1060408<7
    2012NP Photonics, USA[66]DBRYb3+ phosphate 976>100<3
    2013SCUT, China[36]DBRYb3+ phosphate 1064230<2
    2016SCUT, China[67]DBRYb3+ phosphate 1120625.7
    2016Tianjin Uni.(TJU), China[41]DBRNd3+ silica 9301.944
    2016Beijing Uni. of Tech.(BJUT), China[68]DBRYb3+ silica 106321.780.54
    2017Northwest Uni., China[44]DBRYb3+ silica 10301606
    2017Inst. of Radio Eng. and Elec., Russia[59]DFBYb3+ silica 103010<8
    2019Shandong Uni., China[45]DBRYb:YAG silica106411065
    2020SCUT, China[69]DBRNd3+ silica 11201571.5
    2021Uni. of Arizona(UA), USA[70]DBRNd3+ phosphate 91513.5-
    2021Shanghai Uni., China[46]DBRYb:YAG silica1030>255171
    12021UA, USA[71]DBRYb3+ phosphate 105011509.6
    2021National Uni. of Defense Tech.(NUDT), China[72]DFBYb3+ silica 103015418
    1.22012NP Photonics, USA[73]DBRHo3+ ZBLAN 120010<100
    1.52012Shanghai Inst. of Optics and Fine Mech.(SIOM), China[6]DBREr3+-Yb3+ phosphate 1540.3114.24.1
    2012SCUT, China[74]DBREr3+-Yb3+ phosphate 1550>50<2
    2012Beijing Jiaotong Uni., China[56]DFBEr3+- 1544.76843.59.8
    2013UA, USA[75]DBREr3+-Yb3+ phosphate 1538.2550<60
    2017SCUT, China[76]DBREr3+-Yb3+ phosphate 160321<1.9
    2018BJUT, China[77]DBREr3+- 1552-<0.3
    2018NUDT, China[78]DFBEr3+-Yb3+ phosphate 1534.710.44-
    2020Russian Acad. of Sciences, Russia[61]DFBEr3+ phosphate 15500.53.5
    2021Jiangsu Normal Uni., China[62]DFBEr3+ silica 15503.9<1
    2021Shenzhen Uni., China[79]DBREr3+- 1549.313.170.491
    1.72021SCUT, China[80]DBRTm3+ germanate 172712.48.6
    22011Uni. of Southampton, UK[39]DBRTm3+ alumino-silicate 1943580-
    2015SCUT, China[37]DBRTm3+ germanate 1950102.5<6
    2017TJU, China[43]DBRTm3+ silica 19205036
    2018SCUT, China[38]DBRTm3+ germanate 195061712.55
    2019Inst. of Aut. and Electrometry, Russia[57]DFBHo3+ silica 20705310
    2.82015Laval Uni., Canada[55]DFBEr3+ fluoride 2794.412<20
    Table 1. Typical progress of linear short cavity single-frequency fiber lasers
    YearInstitution [Ref.]Gain fiberPRE/dBWavelength/ nm Power/ W Linewidth/ nm
    2012SIOM, China[200]4.2 m Yb3+ PM 1511201010.21
    2013Uni. of Central Florida, USA[201]2 m Tm3+ PM 18.81958.34<0.08
    2013Yunnan Uni., China[204]5 m Yb3+ PM 22-241064.3030.20.11
    2014Ryerson Uni., Canada[194]1.5 m Yb3+Non108838.50.05
    2015NUDT, China[22]3.7 m Yb3+Non1018107.50.26
    2015HFB Photonics, China[206]6 m Yb3+Non10706<0.1
    2016China Acad. of Eng. Phy.(CAEP), China[207]11 m Yb3+Non10802400.39
    2016NUDT, China[202]6.5 m Yb3+ PM 181152130.14
    2016NUDT, China[203]3.1 m Yb3+ PM 23106432.7<0.052
    2017NUDT, China[208]1.3 m Yb3+ PM >15106445≤0.044
    2017Tsinghua Uni., China[209]Yb3+Non1080.22920.78
    2018Tsinghua Uni., China[205]4 m Yb3+ PM 21.61063.2644.10.1
    2019Tsinghua Uni., China[210]10 m Yb3+Non1070800.0366
    2019Uni. of Science and Tech. of China, China[21]4 m Yb3+Non1064800.1
    2019CAEP, China[211]1.5 m+3 m Yb3+Non10677.30.027
    2020CAEP, China[19]1.5 m+1.5 m Yb3+ PM -106410.680.0307
    2021Tsinghua Uni., China[212]5 m Yb3+Non10701450.078
    2021NUDT, China4.5 m Yb3+ PM 13.71050190.20.1598
    Table 2. Typical progress of high power narrow linewidth fiber lasers
    Wanru Zhang, Rongtao Su, Can Li, Song Zhang, Man Jiang, Pengfei Ma, Yanxing Ma, Jian Wu, Pu Zhou. Research progress of narrow linewidth fiber laser oscillator (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20210879
    Download Citation