• Acta Optica Sinica
  • Vol. 42, Issue 19, 1916001 (2022)
Chengcheng Huang1, Yonggang Zhang1、*, Lanju Liang2、**, Haiyun Yao2, Wenjia Liu1, and Fu Qiu1
Author Affiliations
  • 1School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui , China
  • 2School of Opto-Electronic Engineering, Zaozhuang University, Zaozhuang 277160, Shandong , China
  • show less
    DOI: 10.3788/AOS202242.1916001 Cite this Article Set citation alerts
    Chengcheng Huang, Yonggang Zhang, Lanju Liang, Haiyun Yao, Wenjia Liu, Fu Qiu. Narrow/Broad Band Switchable Terahertz Absorber Based on Graphene and Vanadium Dioxide Composite Structure[J]. Acta Optica Sinica, 2022, 42(19): 1916001 Copy Citation Text show less
    References

    [1] Yoo S, Lee S, Park Q H. Loss-free negative-index metamaterials using forward light scattering in dielectric meta-atoms[J]. ACS Photonics, 5, 1370-1374(2018).

    [2] Rhee J Y, Yoo Y J, Kim K W et al. Metamaterial-based perfect absorbers[J]. Journal of Electromagnetic Waves and Applications, 28, 1541-1580(2014).

    [3] Han C R, Yang L C, Ye P et al. Three dimensional chiral plasmon rulers based on silver nanorod trimers[J]. Optics Express, 26, 10315-10325(2018).

    [4] Zhang X, Liu Z W. Superlenses to overcome the diffraction limit[J]. Nature Materials, 7, 435-441(2008).

    [5] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [6] Zamzam P, Rezaei P, Khatami S A. Quad-band polarization-insensitive metamaterial perfect absorber based on bilayer graphene metasurface[J]. Physica E: Low-Dimensional Systems and Nanostructures, 128, 114621(2021).

    [7] Wu G Z, Jiao X F, Wang Y D et al. Ultra-wideband tunable metamaterial perfect absorber based on vanadium dioxide[J]. Optics Express, 29, 2703-2711(2021).

    [8] Zhou J H, Hu Y Z, Jiang T et al. Ultrasensitive polarization-dependent terahertz modulation in hybrid perovskites plasmon-induced transparency devices[J]. Photonics Research, 7, 994-1002(2019).

    [9] Li H, Yu J, Chen Z. Broadband tunable terahertz absorber based on hybrid graphene-vanadium dioxide metamaterials[J]. Chinese Journal of Lasers, 47, 0903001(2020).

    [10] Yao H Y, Yan X, Yang M S et al. Frequency-dependent ultrasensitive terahertz dynamic modulation at the Dirac point on graphene-based metal and all-dielectric metamaterials[J]. Carbon, 184, 400-408(2021).

    [11] Liu Y, Huang R, Ouyang Z B. Terahertz absorber with dynamically switchable dual-broadband based on a hybrid metamaterial with vanadium dioxide and graphene[J]. Optics Express, 29, 20839-20850(2021).

    [12] Li D M, Yuan S, Yang R C et al. Dynamical optical-controlled multi-state THz metamaterial absorber[J]. Acta Optica Sinica, 40, 0816001(2020).

    [13] Wang Y, Chen Z, Cui Q. Tunable terahertz broadband bandpass filter based on vanadium dioxide[J]. Acta Optica Sinica, 41, 2023002(2021).

    [14] Liu M K, Hwang H Y, Tao H et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial[J]. Nature, 487, 345-348(2012).

    [15] Wang S X, Kang L, Werner D H. Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2)[J]. Scientific Reports, 7, 4326(2017).

    [16] Gusynin V P, Sharapov S G, Carbotte J P. Magneto-optical conductivity in graphene[J]. Journal of Physics: Condensed Matter, 19, 026222(2007).

    [17] Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 332, 1291-1294(2011).

    [18] Sensale-Rodriguez B, Yan R, Kelly M M et al. Broadband graphene terahertz modulators enabled by intraband transitions[J]. Nature Communications, 3, 780(2012).

    [19] Lü Y S, Tian J P, Yang R C. Multiband tunable perfect metamaterial absorber realized by different graphene patterns[J]. Journal of the Optical Society of America B, 38, 2409-2418(2021).

    [20] Xu H, Li H J, Chen Z Q et al. Novel tunable terahertz graphene metamaterial with an ultrahigh group index over a broad bandwidth[J]. Applied Physics Express, 11, 042003(2018).

    [21] Smith D R, Schultz S, Markoš P et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients[J]. Physical Review B, 65, 195104(2002).

    [22] Shen H Y, Liu C Y, Liu F X et al. Multi-band plasmonic absorber based on hybrid metal-graphene metasurface for refractive index sensing application[J]. Results in Physics, 23, 104020(2021).

    [23] Wang X, Wang J L. Terahertz metamaterial absorber sensor based on three-dimensional split-ring resonator array and microfluidic channel[J]. Acta Optica Sinica, 40, 1904001(2020).

    [24] Liu W, Lü Y S, Tian J P et al. A compact metamaterial broadband THz absorber consists of graphene crosses with different sizes[J]. Superlattices and Microstructures, 159, 107038(2021).

    [25] Wang T L, Zhang Y P, Zhang H Y et al. Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial[J]. Optical Materials Express, 10, 369-386(2020).

    [26] Bai J J, Zhang S S, Fan F et al. Tunable broadband THz absorber using vanadium dioxide metamaterials[J]. Optics Communications, 452, 292-295(2019).

    [27] Song Z Y, Jiang M W, Deng Y D et al. Wide-angle absorber with tunable intensity and bandwidth realized by a terahertz phase change material[J]. Optics Communications, 464, 125494(2020).

    [28] Zhang H, Ling F, Zhang B. Broadband tunable terahertz metamaterial absorber based on vanadium dioxide and Fabry-Perot cavity[J]. Optical Materials, 112, 110803(2021).

    Chengcheng Huang, Yonggang Zhang, Lanju Liang, Haiyun Yao, Wenjia Liu, Fu Qiu. Narrow/Broad Band Switchable Terahertz Absorber Based on Graphene and Vanadium Dioxide Composite Structure[J]. Acta Optica Sinica, 2022, 42(19): 1916001
    Download Citation