• Photonics Research
  • Vol. 7, Issue 1, 89 (2019)
Jinchao Tong1、2, Yue Qu2、3, Fei Suo1, Wei Zhou2, Zhiming Huang2、4、5、*, and Dao Hua Zhang1、6、*
Author Affiliations
  • 1School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
  • 2State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Key Laboratory of Space Active Opto-electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 5e-mail: zmhuang@mail.sitp.ac.cn
  • 6e-mail: EDHZHANG@ntu.edu.sg
  • show less
    DOI: 10.1364/PRJ.7.000089 Cite this Article Set citation alerts
    Jinchao Tong, Yue Qu, Fei Suo, Wei Zhou, Zhiming Huang, Dao Hua Zhang. Antenna-assisted subwavelength metal–InGaAs–metal structure for sensitive and direct photodetection of millimeter and terahertz waves[J]. Photonics Research, 2019, 7(1): 89 Copy Citation Text show less
    References

    [1] D. Mittleman. Sensing with Terahertz Radiation(2003).

    [2] Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, Q. Hu. Tuning a terahertz wire laser. Nat. Photonics, 3, 732-737(2009).

    [3] B. Ferguson, X. C. Zhang. Materials for terahertz science and technology. Nat. Mater., 1, 26-33(2002).

    [4] N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, H.-T. Chen. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 340, 1304-1307(2013).

    [5] G. Auton, D. B. But, J. Zhang, E. Hill, D. Coquillat, C. Consejo, P. Nouvel, W. Knap, L. Varani, F. Teppe, J. Torres, A. Song. Terahertz detection and imaging using graphene ballistic rectifiers. Nano Lett., 17, 7015-7020(2017).

    [6] F. Sizov, A. Rogalski. THz detectors. Prog. Quantum Electron., 34, 278-347(2010).

    [7] V. I. Shashkin, V. L. Vaks, V. M. Danil’tsev, A. V. Maslovsky, A. V. Murel, S. D. Nikiforov, O. I. Khrykin, Y. I. Chechenin. Microwave detectors based on low-barrier planar Schottky diodes and their characteristics. Radiophys. Quantum Electron., 48, 485-490(2005).

    [8] M. Dyakonov, M. Shur. Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by DC current. Phys. Rev. Lett., 71, 2465-2468(1993).

    [9] H. Qin, X. Li, J. Sun, Z. Zhang, Y. Sun, Y. Yu, X. Li, M. Luo. Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors. Appl. Phys. Lett., 110, 171109(2017).

    [10] W. Knap, Y. Deng, S. Rumyantsev, M. S. Shur. Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors. Appl. Phys. Lett., 81, 4637-4639(2002).

    [11] C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, M. Jarrahi. Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes. Nat. Commun., 4, 1622(2013).

    [12] K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, M. B. Johnston. Single nanowire photoconductive terahertz detectors. Nano Lett., 15, 206-210(2014).

    [13] H. C. Liu, C. Y. Song, A. J. SpringThorpe, J. C. Cao. Terahertz quantum-well photodetector. Appl. Phys. Lett., 84, 4068-4070(2004).

    [14] L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, A. Tredicucci. Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater., 11, 865-871(2012).

    [15] J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, H. D. Drew. Dual-gated bilayer graphene hot-electron bolometer. Nat. Nanotechnol., 7, 472-478(2012).

    [16] X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, M. S. Fuhrer. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat. Nanotechnol., 9, 814-819(2014).

    [17] F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, M. Polini. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol., 9, 780-793(2014).

    [18] L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, M. S. Vitiello. Black phosphorus terahertz photodetectors. Adv. Mater., 27, 5567-5572(2015).

    [19] W. Tang, A. Politano, C. Guo, W. Guo, C. Liu, L. Wang, X. Chen, W. Lu. Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator. Adv. Funct. Mater., 28, 1801786(2018).

    [20] S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, H. Hirai. A single-photon detector in the far-infrared range. Nature, 403, 405-407(2000).

    [21] J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, D. H. Zhang. Surface plasmon induced direct detection of long wavelength photons. Nat. Commun., 8, 1660(2017).

    [22] C. Genet, T. W. Ebbesen. Light in tiny holes. Nature, 445, 39-46(2007).

    [23] W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics. Nature, 424, 824-830(2003).

    [24] J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma. Plasmonics for extreme light concentration and manipulation. Nat. Mater., 9, 193-204(2010).

    [25] J. Tong, L. Y. M. Tobing, S. Qiu, D. H. Zhang, A. G. Unil Perera. Room temperature plasmon-enhanced InAs0.91Sb0.09-based heterojunction n-i-p mid-wave infrared photodetector. Appl. Phys. Lett., 113, 011110(2018).

    [26] A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl. Negative refraction in semiconductor metamaterials. Nat. Mater., 6, 946-950(2007).

    [27] S. A. Maier. Plasmonics: Fundamentals and Applications(2007).

    [28] A. Rogalski. Infrared Detectors(2010).

    [29] R. J. Nicholas, J. C. Portal, C. Houlbert, P. Perrier, T. P. Pearsall. An experimental determination of the effective masses for GaxIn1–xAsyP1–y alloys grown on InP. Appl. Phys. Lett., 34, 492-494(1979).

    [30] K. Moon, H. Han, I. Park. Terahertz folded half-wavelength dipole antenna for high output power. International Topical Meeting on Microwave Photonics, 2, 301-304(2005).

    [31] A. Takazato, T. Matsui, J. Kitagawa, Y. Kadoya. InGaAs photoconductive antennas for THz emission and detection with 1.56  μm excitation. Conference on Lasers and Electro-Optics (CLEO), 1-2(2007).

    [32] A. Singh, A. Pashkin, S. Winnerl, M. Helm, H. Schneider. Gapless broadband terahertz emission from a germanium photoconductive emitter. ACS Photon., 5, 2718-2723(2018).

    [33] K. Moon, E. S. Lee, I.-M. Lee, D. W. Park, K. H. Park. Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures. Appl. Phys. Lett., 112, 031102(2018).

    [34] J. Lloyd-Hughes, E. Castro-Camus, M. B. Johnston. Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches. Solid State Commun., 136, 595-600(2005).

    [35] Y. A. Goldberg, N. M. Shmidt. Gallium indium arsenide phosphide (GaxIn1–xAsyP1–y). Ternary and Quaternary III-V Compounds, 2(1999).

    [36] E. D. Palik. Handbook of Optical Constants of Solids II(1991).

    [37] A. B. Constantine. Antenna Theory: Analysis and Design(2005).

    [38] A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, Y. Kadoya. Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56  μm pulse excitation. Appl. Phys. Lett., 91, 011102(2007).

    [39] C. Karnetzky, P. Zimmermann, C. Trummer, C. Duque Sierra, M. Wörle, R. Kienberger, A. Holleitner. Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters. Nat. Commun., 9, 2471(2018).

    [40] R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, H. L. Hartnagel. Tunable CW-THz system with a log-periodic photoconductive emitter. Solid. State. Electron., 48, 2041-2045(2004).

    [41] A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, J. Stake. Antenna-integrated 0.6  THz FET direct detectors based on CVD graphene. Nano Lett., 14, 5834-5838(2014).

    [42] M. Venkatesh, K. S. Rao, T. S. Abhilash, S. P. Tewari, A. K. Chaudhary. Optical characterization of GaAs photoconductive antennas for efficient generation and detection of terahertz radiation. Opt. Mater., 36, 596-601(2014).

    [43] E. K. Lau, A. Lakhani, R. S. Tucker, M. C. Wu. Enhanced modulation bandwidth of nanocavity light emitting devices. Opt. Express, 17, 7790-7799(2009).

    [44] M. A. Klompenhouwer. 51.1: Temporal impulse response and bandwidth of displays in relation to motion blur. SID Symposium Digest of Technical Papers, 36, 1578-1581(2005).

    [45] E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, C. Jagadish. Polarization-sensitive terahertz detection by multicontact photoconductive receivers. Appl. Phys. Lett., 86, 254102(2005).

    [46] A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, A.-S. Müller. Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation. IEEE Electron Dev. Lett., 31, 674-676(2010).

    [47] R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, M. S. Shur. Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power. Appl. Phys. Lett., 89, 253511(2006).

    CLP Journals

    [1] Zheng LI, Qing SUN, Mei-qi FENG, Liang SHANG, Yu-qiang DENG, Chao-chen LI. Research on Variable Angle Fiber-Type Terahertz Time-Domain Spectrometer[J]. Spectroscopy and Spectral Analysis, 2020, 40(11): 3379

    Jinchao Tong, Yue Qu, Fei Suo, Wei Zhou, Zhiming Huang, Dao Hua Zhang. Antenna-assisted subwavelength metal–InGaAs–metal structure for sensitive and direct photodetection of millimeter and terahertz waves[J]. Photonics Research, 2019, 7(1): 89
    Download Citation