• Journal of Innovative Optical Health Sciences
  • Vol. 7, Issue 3, 1450015 (2014)
D. E. Postnov1、*, A. Y. Neganova1, D. D. Postnov1, and A. R. Brazhe2
Author Affiliations
  • 1Physics Department, Saratov State University Astrakhanskaya St. 83, Saratov 410012, Russia
  • 2Biophysics Department, Biological Faculty, Moscow State University Leninskie Gory 1, Building 12, 119991 Moscow, Russia
  • show less
    DOI: 10.1142/s1793545814500151 Cite this Article
    D. E. Postnov, A. Y. Neganova, D. D. Postnov, A. R. Brazhe. Monitoring of rhythms in laser speckle data[J]. Journal of Innovative Optical Health Sciences, 2014, 7(3): 1450015 Copy Citation Text show less
    References

    [1] M. Draijer, E. Hondebrink, T. van Leeuwen, W. Steenbergen, "Review of laser speckle contrast techniques for visualizing tissue perfusion", Lasers Med Sci. 24, 639 (2009).

    [2] J. D. Briers, "Laser speckle contrast imaging for measuring blood flow", Opt Appl. XXXVII(1–2), 139 (2007).

    [3] H. Cheng, Y. Yan, T. Q. Duong, "Laser speckle imaging of rat retinal blood flow with hybrid temporal and spatial analysis method", Proc. SPIE 7163, Ophthalmic Technologies XIX, 716304, doi: 10.1117/12.809906.

    [4] M. A. Vilensky, O. V. Semyachkina-Glushkovskaya, P. A. Timoshina, J. V. Kuznetsova, I. A. Semyachkin-Glushkovskii, D. N. Agafonov, V. V. Tuchin, "Laser speckle-imaging of blood microcirculation in the brain cortex of laboratory rats in stress", Quantum Electron. 42, 489 (2012).

    [5] J. K. Meisner, S. Sumer, K. P. Murrell, T. J. Higgins, R. J. Price, "Laser speckle flowmetry method for measuring spatial and temporal hemodynamic alterations throughout large microvascular networks", Microcirculation. 19, 619 (2012).

    [6] N. H. Holstein-Rathlou, O. V. Sosnovtseva, A. N. Pavlov, W. A. Cupples, C. M. Sorensen, D. J. Marsh, "Nephron blood flow dynamics measured by laser speckle contrast imaging", Am. J. Physiol. Renal. Physiol. 300, F319 (2011).

    [7] W. Luo, P. Li, Z. Wang, S. Zeng, Q. Luo, "Tracing collateral circulation after ischemia in rat cortex by laser speckle imaging", J. Innov. Opt. Health Sci. 1 (2), 217 (2008).

    [8] P. Zakharov, A. C. Vlker, M. T. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, B. Weber, "Dynamic laser speckle imaging of cerebral blood flow", Opt. Express. 17(16), 13904 (2009).

    [9] Q. Luo, C. Jiang, P. Li, H. Cheng, Z. Wang, Z. Wang, V. V. Tuchin, "Laser speckle imaging of cerebral blood flow ", Handbook of Coherent- Domain Optical Methods: Biomedical Diagnostics, Environmental Monitoring, and Materials Science, Chap. 5, V. V. Tuchin, Ed., pp. 167–211, Springer Science + Business Media, New York (2013).

    [10] A. Colantuoni, S. Bertuglia, M. Intaglietta, "Quantitation of rhythmic diameter changes in arterial microcirculation", Am. J. Physiol. 246, H508–H517 (1984).

    [11] I. S. Bartlett, G. J. Crane, T. O. Neild, S. S. Segal, "Electrophysiological basis of arteriolar vasomotion in vivo", J. Vasc. Res. 37, 568 (2000).

    [12] H. Nilsson, C. Aalkjaer, "Vasomotion: Mechanisms and physiological importance", Mol. Interv. 3, 79 (2003).

    [13] C. Aalkjaer, H. Nilsson, "Vasomotion: cellular background for the oscillator and for the synchronization of smooth muscle cells". Br. J. Pharmacol. 144, 605 (2005).

    [14] N.-H. Holstein-Rathlou, P. P. Leyssac, "TGFmediated oscillations in the proximal intratubulular pressure: Differences between spontaneously hypertensive rats and Wistar-Kyoto rats", Acta Physiol. Scand. 126, 333 (1986).

    [15] N.-H. Holstein-Rathlou, D. J. Marsh, "Renal blood flow regulation and arterial pressure fluctuations: a case study in nonlinear dynamics", Physiol. Rev. 74 637 (1994).

    [16] A. H. Oien, K. Aukland, "A multinephron model of renal blood flow autoregulation by tubuloglomerular feedback and myogenic response", Acta Physiol. Scand. 143, 71 (1991).

    [17] D. D. Postnov, D. E. Postnov, D. J. Marsh, N.-H. Holstein-Rathlou, O. V. Sosnovtseva, "Dynamics of nephron-vascular network", Bull. Math. Biol. 74 (12), 2820 (2012).

    [18] D. J. Marsh, A. S. Wexler, A. Brazhe, D. E. Postnov, O. V. Sosnovtseva and N. H. Holstein-Rathlou, "Multinephron dynamics on the renal vascular network", Amer. J. Physiol. — Renal Physiol. 304(1) F88–F102 (2013).

    [19] S. Mallat, A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way, Academic Press, Burlington, MA (2009).

    [20] R. Bracewell, The Fourier Transform and Its Applications, McGraw-Hill Science/Engineering/Math, New York (1999).

    [21] P. S. Addison, The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance, Institute of Physics Publishing, London, UK (2002).

    [22] J. Sanders, E. Kandrot, CUDA by Example: An Introduction to General-PurposeGPUProgramming, Addison-Wesley Professional, Cambridge (2010).

    [23] W.-M W. Hwu, GPU Computing Gems Emerald Edition (Applications of GPU Computing Series), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2011).

    [24] K. K. C. Lee, A. Mariampillai, J. X. Z. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, V. X. D. Yang, "Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit", Biomed. Opt. Express. 3(7), 1557 (2012).

    [25] S. Liu, P. Li, Q. Luo, "Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit", Opt. Express. 16(19), 14321 (2008).

    [26] O. Yang, D. Cuccia, B. Choi, "Real-time blood flow visualization using the graphics processing unit", J. Biomed. Opt. 16(1), 016009 (2011).

    D. E. Postnov, A. Y. Neganova, D. D. Postnov, A. R. Brazhe. Monitoring of rhythms in laser speckle data[J]. Journal of Innovative Optical Health Sciences, 2014, 7(3): 1450015
    Download Citation