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While the laser speckle imaging (LSI) is a powerful tool for multiple biomedical applications, such
as monitoring of the blood °ow, in many cases it can provide additional information when
combined with spatio-temporal rhythm analysis. We demonstrate the application of Graphics
Processing Units (GPU)-based rhythm analysis for the post processing of LSI data, discuss the
relevant structure of GPU-based computations, test the proposed technique on surrogate 3D
data, and apply this approach to kidney blood °ow autoregulation. Experiments with surrogate
data demonstrate the ability of the method to extract information about oscillation patterns from
noisy data, as well as to detect the moving source of the rhythm. The analysis of kidney data
allow us to detect and to localize the dynamics arising from autoregulation processes at the level
of individual nephrons (tubuloglomerular feedback (TGF) rhythm), as well as to distinguish
between the TGF-active and the TGF-silent zones.
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1. Introduction

Laser speckle imaging (LSI) is one of the rapidly

developing optical techniques. In biomedical appli-

cations, LSI is used for measuring tissue perfusion

rate,1,2 or the blood °ow rate in small vessels.3,4

For research and diagnostic purposes, it is useful
not only to perform local measurement, but also to
obtain temporal and spatial patterns of the blood
°ow. There are examples of successful LSI appli-
cation for measuring spatial and temporal hemo-
dynamic alterations in microvascular networks.5,6
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The LSI-based studies on cerebral blood °ow also
utilize the ability of the method to deliver the in-
formation about non-stationary, time varying and
spatially inhomogeneous processes.7–9

In the above examples, the useful information
was obtained by means of calculation of time- and/
or space-averaged speckle contrast pattern or rela-
tive slow blood °ow changes. However, in many
cases rhythmic changes of °ow rate (not °ow rate
itself) within speci¯c frequency range can provide
useful information.

Vasomotion is a physiological process in which
blood vessels spontaneously and rhythmically dilate
and constrict with frequency from 0.015 to
0.3Hz.10,11 The underlying mechanism is based
on ionic mechanisms in vascular smooth muscle
cells.12,13 Additional experimental veri¯cation of
predictions made on temporal and spatial features of
such self-sustained behavior of arterial wall is needed.

Experimental studies on kidney blood °ow auto-
regulation show the existence of pronounced rhyth-
mic component in the proximal intratubular pressure
of individual nephron.14 This rhythm appears due to
the so-called tubuloglomerular feedback (TGF) and
re°ects the essential feature of nephrons (and, hence,
kidney) functioning. It was shown that the proximal
tubular pressure, distal tubular Cl� concentration
and single nephron blood °ow dynamics exibit typi-
cal features of self-sustained oscillations.15,16

Attempts to understand the behavior of large
nephron ensembles17,18 reveal the need for infor-
mation on rhythmic components of renal blood °ow.
Recently, LSI was used to quantify synchronization
of TGF-oscillations between many nephrons ident-
i¯ed on the kidney surface.6

We suggest that LSI technique can gain from the
combination with advanced data analysis tech-
niques. Windowed Fourier transform19,20 or wavelet
transform19,21 can be used to extract additional in-
formation about rhythmic activity. However, there
are some computational issues.

First, the LSI data are typically recorded as a
sequence of frames. Thus, to obtain the single time
course in selected location one needs to pass through
all frames. It implies either to load all data in
computer RAM, which is memory expensive, or to
build a time course from ¯le(s) stored on the disk,
which is slow. Second, the spectral analysis over all
frames requires much more computational power
than calculation of speckle contrast and/or °ow
rate from the original data.

In the recent years, the rapidly developing GPU-
based parallel computing technique22,23 provided an
e®ective and relatively inexpensive solution for the
second mentioned problem. GPU-based computing
has recently been applied in optical coherence
tomography (SS-OCT) systems,24 as well as for
real-time processing of raw speckle data.25,26

Here, we demonstrate the application of GPU-
powered rhythm analysis for the post-processing
(further analysis of already calculated relative °ow
rate) of LSI data. We discuss the relevant struc-
ture of GPU-based computations, test the proposed
technique on surrogate 3D data, and illustrate its
application to the study of autoregulation of kidney
blood °ow.

2. Methods and Materials

2.1. Surrogate data

In order to verify the performance of the proposed
computational schemes, the surrogate data are
prepared in the form of frame sequences. Each
frame represents a prede¯ned pattern obtained by
mixture of noise and periodic signals. Namely:

. For the simulation of a spatially stable oscillating
pattern, surrogate data consisted of 1000 frames
each of 100� 100 pixels. Multimodal temporal
dynamics is simulated using six harmonic signals
of unit amplitude with frequencies 1/6, 1/18,
1/25, 1/30, 1/100, 1/23Hz, and the spatially and
temporary uncorrelated noise with uniformly
distributed values. The sum of all harmonic sig-
nals is biased to be always positive and then the
noise term is added.

. To simulate a moving oscillating object, the
number of frames is increased to 2500 with the
same temporal structure. The spatial pattern is
the spot of 15� 15 pixels size moving from top
left to bottom right corners.

2.2. Kidney blood °ow data

Experimental LSI data of kidney blood °ow in rats
were provided by Holstein-Rathlou and Sosnovtseva,
Univ. of Copenhagen. Physiological interpretations
as well as animal preparation are described in Ref. 6.
The measurements were made using speckle contrast
imager \moorFLPI" (Moor Instruments, UK) in high
spatial resolution mode. The raw speckle data were
averaged in time domain over 25 frames in order to
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calculate single frame of °ow rate. The resulted data
contain 2640 frames with resolutions of 760� 568
pixels each. Resulted sampling rate is 1 frame per
second, so the total recording time is 44min. Since we
focus on the frequency range below the 0.03Hz, such
value of sampling rate provides more then 30 points
per period. It means that the time domain averaging
of raw data does not limit our computations.

2.3. Data analysis

Data can be viewed as 3D array and has the form
dðx; y; lÞ, where induces x and y denote the pixel
position within the frame, and l is the discrete time
(frame number). The actual time t ¼ � l, where � is
the sampling time interval.

Conventional discrete windowed Fourier trans-
form (WFT) of 1D data can be described by the
following equation19:

Sðm; lÞ ¼
XN�1

n¼0

ðdðnÞgðn�mÞe�j2�lnN Þ; ð1Þ

where gðn�mÞ is Fourier window. Because we use
rectangle window gðtÞ ¼ 1,19 and since we actually
have a 2D array of 1D windowed Fourier trans-
forms, Eq. (1) takes the following form:

Sðx; y; k; lÞ ¼
Xðkþ1ÞN�1

n¼k�N
ðdðx; y;nÞe�j2�lnN Þ; ð2Þ

where k denotes window number, and N is the
point number in each window. Actual frequency
values are calculated as f ¼ l=ð2N�Þ. Each value of
k corresponds to the time interval t 2 ðkN�;
ðkþ 1ÞN�Þ. Since the experimental data is a ran-
dom process, throughout this paper we use the
power spectrum obtained from the complex result of
Fourier transform as jSj2, where j � j means the
modulus of the complex quantity.

The power spectrum of all data is obtained by
averaging of jSj2 over the Nk data windows:

jSðx;y;lÞj2 ¼ 1

Nk

XNk

k¼0

jSðx; y; k; lÞj2: ð3Þ

Continious wavelet transform (WT) based on the
Morlet wavelet is used in the following form19:

Wðx; y; a; lÞ ¼ 1ffiffiffiffiffiffijajp
XN�1

k¼0

dðx; y; lÞej2�k0 k�l
a e

�ðk�l
a Þ 2
2 ;

ð4Þ

where l is the number of sample, k0 is the parameter,
a is the scaling parameter. As above, the actual time
is t ¼ � l, while the frequency can be estimated as
f � 1=a� for k0 � 1. Similar to WFT, wavelet
power spectrum is calculated as jW j2.

Both Fourier, and wavelet power spectra can be
averaged over some part of the frame, or over the
whole frame:

jSj2Aðk; lÞ ¼ 1

NA

X

x;y2A
jSðx; y; k; lÞj2;

jW j2Aða; lÞ ¼ 1

NA

X

x;y2A
jWðx; y; a; lÞj2;

ð5Þ

where A denotes some area less or equal to the whole
frame, and NA is the number of pixels within A.

Throughout the paper, we use space-averaged
spectra according to Eq. (5), while the localization
of measurement is provided by the selection of A in
the range from 1 to 431,680. Thus, in the text and
¯gures below we omit the subscript A, but always
indicate the size of A in ¯gure captions.

2.4. GPU data processing

GPU-based systems can signi¯cantly accelerate
image processing. However, the speci¯c implemen-
tation of computing schemes can considerably a®ect
the ¯nal result. Namely, non-optimal handling of
massive data can disavow the bene¯ts of parallel
computing. In the case we consider, the conven-
tional organization of LSI data in the form of
sequence of frames is very suitable for the real-time
speckle contrast/°ow calculations, but not optimal
for the rhythm analysis since one needs to extract
data point-by-point from all the frames. Another
important issue arises from the need to exchange
data between the computer RAM and graphics
device memory.

To avoid the performance loss due to the above
reasons, we put all the data to be processed into
device memory (6Gb for NVIDIA Tesla C2075)
once for each program run (Fig. 1). Then, both
spatial and temporal domains are selected for
analysis interactively and only the resulted data are
passed back to computer memory.

According to our tests performed on algorithms
we use, GPU-based computations using such Nvidia
devices as GeForce Titan, GeForce 650M, Tesla
C2075 provide more then 200 times acceleration
comparing with CPU (single core) program runs on
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Intel Core i7-3970X. For example, 1300 frames of
500� 400 pixels each can be processed by simple (not
fastest) wavelet transform algorithm in about 20 s.

3. Results

While the application of windowed Fourier trans-
form or wavelet transform to 1D data is straight-
forward, the complete transformation of 3D LSI
data produces 4D array of results which is quite
di±cult to analyze. To keep the analysis reasonably
simple, we use the following scheme:

. Calculate the spatially averaged power (Fourier
or wavelet) spectrum over all data array. It deli-
vers a simple 1D graph and allows one to estimate
the most pronounced rhythms and to de¯ne the
frequency range of interest, but information
about spatial patterns is lost.

. Perform analysis for each selected frequency
range (with averaging over frequencies within
range) but keeping available spatial resolution.
The result is 3D data being a sequence of frames

showing the spatial structure and its evolution for
the selected rhythm.

. Select small areas of interest and performWFT or
WT in wider frequency range with spatial aver-
aging over selected areas. This gives 2D data
(power vs time and frequency) that describe time
evolution and possibly the frequency deviation at
selected characteristic locations.

3.1. Detection and localization of

rhythmic activity

In this section, we illustrate how the above described
technique works when applied to the surrogate data.
First, we test its ability to visualize a spatial pattern
that is stable in time, but has slightly di®erent fre-
quency of one of the six rhythms as described in
Sec. 2.1. Figure 2 shows representative snapshots.

The top and bottom rows are calculated at noise
amplitudes of 50% and 200% of signal amplitude,
respectively. Left panels (a) and (d) show the aver-
aged °ow data. No spatial structure is detectable in
both cases. Central panels (b) and (e) display the
spectral components of Fourier power spectrum at
f ¼ 0:30468, while right panels (c) and (f) represent
the power wavelet spectrum at f ¼ 0:30.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Localization of rhythmic activity in a speci¯c fre-
quency domain. Surrogate data, 100� 100 pixels. Oscillations
with the period of 30 s are attributed to the tree-like object. Top
and bottom rows are obtained at noise amplitude of 50% and
200% of signal amplitude, respectively. (a) and (d) shows time
averaged LSI data; (b) and (e) Fourier power spectrum at
frequency f ¼ 0:30468; (c) and (f) WT spectral power at fre-
quency f ¼ 0:30. NA ¼ 1.

Fig. 1. A schematic illustration of GPU-based processing of
large LSI data. The thicker arrows correspond to larger amount
of data tra±c between CPU memory on motherboard and
memory on GPU unit. Red color denotes the data exchange
that is done once for each program run.
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It is clear that at 50% noise level both methods
successfully reveal the spatial structure hidden in a
noisy and multimode signal. However, 200% noise
level completely smears the structure (e) while the
wavelet-based pattern is still visible (f).

In order to simulate a non-stationary rhythm
source, we use the moving pattern in the form of a
small spot that travels from top left corner of the
¯eld to the bottom right one (Fig. 3). With such
choice, we also cover the case when rhythm source is
activated or deactivated during the observation
time. Four rows of the ¯gure show the simulated
°ow image, spectral component f ¼ 0:30468 of
time-averaged Fourier power spectrum, WFT at the
same frequency, and the power wavelet spectrum at
f ¼ 0:30 for indicated time intervals.

As in the previous example, the original data
does not show any sign of the pattern. In the second
row one can see the smeared stripe, both the third

(WFT-based analysis) and fourth (WT-based
analysis) rows clearly show current location of the
object.

In conclusion, the described technique success-
fully reveals both stationary and non-stationary
spatial patterns formed by rhythmic modulation of
LSI data.

3.2. Spatio-temporal patterns in

renal blood °ow

Figure 4(a) shows the optical image of a rat's kid-
ney. The kidney is outlined by dashed curves.
Numbers I–IV denote the regions of interest that we
characterize in Fig. 7. The light spot in the central-
left part of the image consists of fat.

Panel (b) of the same ¯gure shows the °ow image
averaged over recording time (44min). The
brightest parts (yellow) corresponds to relatively

t=6 t=500 t=1000 t=1500 t=1840

0−256 512−756 1024−1280 1536−1792 1792−2048

t=1000t=500t=6 t=1500 t=1840

Fig. 3. On detection of a non-stationary (moving) rhythm source. Surrogate data. Row (a) — Surrogate LSI data; Row (b) —
averaged Fourier power spectrum at f ¼ 0:30468 (the same for the all time moments); (c) and (d) show the selected frames of
windowed Fourier power spectrum at the same frequency f ¼ 0:30468, and the wavelet power spectrum at f ¼ 0:30 for the indicated
moments of time, respectively. NA ¼ 1.
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large blood vessels, while the main part of the kid-
ney surface is red. Low °ow values (blue) corre-
spond to the points outside the kidney. The precise
location of points I, II, and III is shown in panel (c).

Figure 5 shows the averaged power spectra
obtained according to (5) and averaged over time
and space domains. There is a pronounced peak at
f ¼ 0:0185Hz in both Fourier and wavelet spectra.

We associate this peak with TGF oscillations. This
process modulates the arteriolar blood °ow and
thus can be detected by LSI. The smaller spectral
peak at f ¼ 0:23Hz presumably associated with
myogenic regulation in a®erent arterioles of
nephrons. This peak is considerably wider in
wavelet spectrum. This can be explained by the
used value of k0 ¼ 1 which is optimal for lower
frequencies. Below, we focus exclusively on TGF
rhythm and wavelet-based power spectra.

According to the above proposed scheme of
rhythm analysis, next stage was focused on spatial
patterns of the selected rhythmic activity. Figure 6

0.01 0.1
f,Hz

0.0

0.4

0.8

1.2

|S
|2 ,  

|W
|2 , a

.u
.

0.0185 Hz

0.23 Hz

Fig. 5. Experimental data on kidney blood °ow. Fourier (red)
and wavelet (black) power spectra both obtained by averaging
over space and time. Peaks at f ¼ 0:0185Hz and f ¼ 0:23Hz
corresponds to the TGF and to the myogenic response.
NA ¼ 431680.

1.50.2
WT, a.u.

t=800 s t=1200 s

f=0.01 Hz

t=400 s

f=0.0184Hz

Fig. 6. The representative snapshots of WT power of the
kidney segment recorded at f ¼ 0:01Hz (slow unspeci¯ed
rhythm) and at f ¼ 0:0185Hz (TGF regulation). Dashed con-
tour outlines the localized area of pronounced TGF rhythm.
The time distance between frames corresponds to 8–9 TGF
periods. NA ¼ 1.

I

IIIII

IV

(a)

max

min

(b)

I

II
III

(c)

Fig. 4. Experimental data on kidney blood °ow. (a) Optical
image of rat's kidney (outlined by dashes) with marked points
of interest. (b) Blood perfusion image, estimated from LSI and
averaged over 44min. (c) Close up on the rectangle in (b).
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shows the representative snapshots of wavelet based
spectral power on f ¼ 0:01Hz (top row), and on
TGF frequency f ¼ 0:0185Hz (bottom row). Low
frequency activity at � 0:01Hz does not correspond
to a spectral peak in Fig. 5 and is used as kind of
reference pattern.

One can see that spatial distribution of this
rhythm is remarkably stable. In contrast, three
panels in bottom row demonstrate the pronounced
temporal evolution: the spatial pattern of TGF os-
cillations changes with time. Considering the snap-
shots for t ¼ 400, 800, and 1200 s, the area of high
activity (outlined by dashed curve) ¯rst shrinks to
the spot, and then moves upward.

The time interval between snapshots corresponds
to 7–8 periods of oscillations on TGF frequency.
Thus, the observed behavior suggests that individ-
ual cortical nephrons oscillate not all the time, but
rather show the modulated activity with a slow
varying envelope.

The observation of averaged (Fig. 5) and evol-
ving (Fig. 6) activity provides the basis to select the
representative locations, that are numbered as I–IV
in Fig. 4(a).

Namely, location I corresponds to a blood vessel
segment, location II is in the region of high TGF
activity, location III points to the small active zone
that need to be identi¯ed, and location IV was

Fig. 7. Patterns of rhythmic activity in di®erent regions of interest as indicated in Fig. 4(a). NA ¼ 25.
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selected out of kidney in order to provide a negative
control, since no kidney-related activity is expected
here. The detailed wavelet-based description of
dynamics in regions of interest is given in Fig. 7. For
each region of interest a small area of 25 pixels is
selected to calculate both time-averaged and time-
dependent power spectra.

Region I, identi¯ed as a blood vessel, shows the
maximal spectral power at very low frequencies. In
the average spectrum, a smeared peak around f ¼
0:01Hz is seen, while almost all spectral power is
concentrated near the origin, representing the close-
to-consant °ow component. In the time domain, this
low frequency activity seems to be the most per-
sistent in time, while the higher-frequency activity
appears uncorrelated in time. The absence of TGF
rhythm here is consistent with what is expected for a
blood vessel. Note, due to low sampling rate (1Hz)
the data are free from fast changes of systemic
arterial pressure, such as heart rate.

Region II corresponds to the pronounced rhyth-
mic modulation of blood °ow in nephrons. Peak at
f � 0:018Hz is dominant but two more peaks at
f ¼ 0:01Hz and f ¼ 0:005Hz are present, while
the very low frequency components are absent. The
inspection of temporal changes of activity shows,
that the identi¯ed rhythms have a time-dependent
amplitude but stable enough frequency.

Region III represents the small bright spot of
� 20 pixels on the averaged °ow map Fig. 4(b). The
averaged spectrum seems to be some mixture of one
for the regions I and II, but the inspection of tem-
poral dynamics reveals drastic di®erences. Namely,
there is one but powerful burst of activity � 800
and � 2000 s. The shape of wavelet power spectrum
at this time shows the presence of almost all fre-
quencies in the analyzed range. Such all-frequency
bursts in wavelet transform often correspond to the
sharp rise or fall of the measured quantity or other
signal discontinuity.

Lastly, region IV is placed outside of the kidney
in order to verify the relevance of rhythmic com-
ponents in locations I–II to the kidney autoregula-
tion processes. First, note the relatively low spectral
power recorded here. No activity is found in the
TGF frequency range, while the single pronounced
peak in the averaged spectrum is located at
� 0:003Hz. It corresponds to the period more than
5min and can be hypothetically related to mech-
anical displacement of animal preparation. Thus,
the spectral components at the same frequency in

other regions of interest can also be regarded as
artifacts.

4. Conclusion

LSI technique combined with spectral-temporal
analysis of rhythmic activity becomes a powerful
tool for monitoring of blood °ow.

Technically, it can be done using existing methods
such as windowed Fourier transform and continuous
wavelet transform. The GPU-based parallel com-
puting can provide a balanced solution for fast
interactive processing of LSI data at reasonable costs.

Spectral-temporal analysis provides extensive
output (for example, wavelet transform of 3D data
results in 4D output). We propose the following
approach to handle the data:

. To estimate the most pronounced rhythms and to
de¯ne the frequency ranges of interest.

. To analyze each selected frequency range with
available spatial resolution. The resulted 3D data
show the spatial structures and their evolution for
the selected rhythm.

. To select the speci¯c regions of interest and to
perform the spectral-temporal analysis with
spatial averaging.

We have applied the proposed approach both to
surrogate data and to experimentally recorded sig-
nal from the surface of rat's kidney.

Experiments with surrogate data demonstrated
that the method can extract the information about
oscillating patterns at high noise levels, when con-
ventional (°ow-based) analysis fails, and can detect
a moving source of rhythm.

The analysis of kidney data allowed us to detect
and to localize TGF dynamics arising from auto-
regulation processes in individual nephrons. Loca-
lized (averaged over small areas) analysis allows one
to distinguish between TGF-active zones and TGF-
free ones. This provides a basis for further devel-
opment of automatized system for LSI-based kidney
mapping.

Concerning computational aspects of our work,
the usage of GPU devices such as Tesla C2075 or
similar allows interactive search and analysis of
rhythmic components. When computation time is
of the same order with time needed by researcher to
analyze the obtained result and plan the next step,
one can say about \online post processing" of
data, it is practically impossible with CPU-based
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computations which can take hours. Speci¯cally,
the calculation of wavelet transform as shown in
Fig. 7, panels I–IV takes 4.5 s each. The one-fre-
quency analysis of 100� 100 pixels area takes 8.5 s.

The evident next step would be the implemen-
tation of online rhythm analysis along with speckle
contrast calculation. However, this task has its own
speci¯city and is out of the present study.

Further development of this approach might be
also focused on utilization of phase component of
wavelet transform. Concerning the kidney data, our
results show no pronounced phase coherent patterns
of the TGF rhythm. This is consistent with recent
theoretical predictions,17,18 but not suitable for
testing of the data analysis method.
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